Loading…
Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System
The (2 + 1)-dimensional Konopelchenko-Dubrovsky system contributes to the field of atmospheric science by investigating the behaviour of nonlinear waves, revealing subtle scattering effects and extended-range interactions within the tropical and mid-latitude troposphere. This equation provides insig...
Saved in:
Published in: | Results in physics 2024-02, Vol.57, p.107370, Article 107370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3 |
container_end_page | |
container_issue | |
container_start_page | 107370 |
container_title | Results in physics |
container_volume | 57 |
creator | Fahad, Asfand Boulaaras, Salah Mahmoud Rehman, Hamood Ur Iqbal, Ifrah Chou, Dean |
description | The (2 + 1)-dimensional Konopelchenko-Dubrovsky system contributes to the field of atmospheric science by investigating the behaviour of nonlinear waves, revealing subtle scattering effects and extended-range interactions within the tropical and mid-latitude troposphere. This equation provides insights into the interplay between equatorial and mid-latitude Rossby waves, capturing their complex interactions and dynamics. Nonlinear waves are significant in atmospheric processes and understanding their dynamics is important for comprehending weather patterns. This study centres around the utilisation of the simplest equation method and extended hyperbolic function method to analyse these waves and derives many solutions that illustrate different wave patterns and behaviours intrinsic to the governed system. The simplest equation method enables the derivation of kink and multi-soliton solutions. This method allows for the extraction of solutions characterised by multiple solitary waves propagating without distortion. On the other hand, the extended hyperbolic function method provides anti-bell-shaped, periodic, and singular solutions. These diverse solution types portray various wave patterns and behaviours intrinsic to the equation under study. Additionally, 3D and 2D graphical representations are generated to visually depict the obtained solutions. Hence, this study not only contributes to the comprehension of non-linear wave dynamics in atmospheric science but also imparts knowledge on the broader applicability of mathematical methods in uncovering the underlying intricacies of natural phenomena in different fields of non-linear sciences.
•The Konopelchenko-Dubrovsky equation unveils atmospheric nonlinear wave interaction.•Investigating the interplay between tropical and mid-latitude Rossby waves.•Graphical representations shed light on diverse nonlinear wave behaviours.•Bridging nonlinear wave dynamics with broader applications in sciences. |
doi_str_mv | 10.1016/j.rinp.2024.107370 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb6a295846bc4c8aa8e07fd25cbabb29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211379724000524</els_id><doaj_id>oai_doaj_org_article_cb6a295846bc4c8aa8e07fd25cbabb29</doaj_id><sourcerecordid>S2211379724000524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhRdRsNT-AZ_yqMjW3HY3K75IvRULCupzSLKzbdrdpCRrpf_erRXxSRiY4QzfYeYkySnBY4JJfrkcB-vWY4op74WCFfggGVBKSMqKsjj8Mx8noxiXGPcUzzJCBol5CV5bN0fOu8Y6UAF9qg2gautUa028QlMX7XzRRVQH36JuAeiMXpDztLIt9CvvVIOevPNraMwC3Mqntx86-E1cbdHrNnbQniRHtWoijH76MHm_v3ubPKaz54fp5GaWGk5wlzIoBQcDheAiLykozDEjYESOs5qpApc55AKIzjGvQQMTkPUFha4Zq4hiw2S69628Wsp1sK0KW-mVld-CD3OpQmdNA9LoXNEyEzzXhhuhlABc1BXNjFZa07L3onsvE3yMAepfP4LlLnW5lLvU5S51uU-9h673EPRfbiwEGY0FZ6CyAUzXn2H_w78A56mMMg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System</title><source>Elsevier ScienceDirect Journals</source><creator>Fahad, Asfand ; Boulaaras, Salah Mahmoud ; Rehman, Hamood Ur ; Iqbal, Ifrah ; Chou, Dean</creator><creatorcontrib>Fahad, Asfand ; Boulaaras, Salah Mahmoud ; Rehman, Hamood Ur ; Iqbal, Ifrah ; Chou, Dean</creatorcontrib><description>The (2 + 1)-dimensional Konopelchenko-Dubrovsky system contributes to the field of atmospheric science by investigating the behaviour of nonlinear waves, revealing subtle scattering effects and extended-range interactions within the tropical and mid-latitude troposphere. This equation provides insights into the interplay between equatorial and mid-latitude Rossby waves, capturing their complex interactions and dynamics. Nonlinear waves are significant in atmospheric processes and understanding their dynamics is important for comprehending weather patterns. This study centres around the utilisation of the simplest equation method and extended hyperbolic function method to analyse these waves and derives many solutions that illustrate different wave patterns and behaviours intrinsic to the governed system. The simplest equation method enables the derivation of kink and multi-soliton solutions. This method allows for the extraction of solutions characterised by multiple solitary waves propagating without distortion. On the other hand, the extended hyperbolic function method provides anti-bell-shaped, periodic, and singular solutions. These diverse solution types portray various wave patterns and behaviours intrinsic to the equation under study. Additionally, 3D and 2D graphical representations are generated to visually depict the obtained solutions. Hence, this study not only contributes to the comprehension of non-linear wave dynamics in atmospheric science but also imparts knowledge on the broader applicability of mathematical methods in uncovering the underlying intricacies of natural phenomena in different fields of non-linear sciences.
•The Konopelchenko-Dubrovsky equation unveils atmospheric nonlinear wave interaction.•Investigating the interplay between tropical and mid-latitude Rossby waves.•Graphical representations shed light on diverse nonlinear wave behaviours.•Bridging nonlinear wave dynamics with broader applications in sciences.</description><identifier>ISSN: 2211-3797</identifier><identifier>EISSN: 2211-3797</identifier><identifier>DOI: 10.1016/j.rinp.2024.107370</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation ; Extended hyperbolic function method (EHFM) ; Mathematical Model ; Multi-solitons ; Nonlinear equations ; Simplest equation method (SEM)</subject><ispartof>Results in physics, 2024-02, Vol.57, p.107370, Article 107370</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3</citedby><cites>FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3</cites><orcidid>0000-0001-9533-1918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2211379724000524$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Fahad, Asfand</creatorcontrib><creatorcontrib>Boulaaras, Salah Mahmoud</creatorcontrib><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Iqbal, Ifrah</creatorcontrib><creatorcontrib>Chou, Dean</creatorcontrib><title>Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System</title><title>Results in physics</title><description>The (2 + 1)-dimensional Konopelchenko-Dubrovsky system contributes to the field of atmospheric science by investigating the behaviour of nonlinear waves, revealing subtle scattering effects and extended-range interactions within the tropical and mid-latitude troposphere. This equation provides insights into the interplay between equatorial and mid-latitude Rossby waves, capturing their complex interactions and dynamics. Nonlinear waves are significant in atmospheric processes and understanding their dynamics is important for comprehending weather patterns. This study centres around the utilisation of the simplest equation method and extended hyperbolic function method to analyse these waves and derives many solutions that illustrate different wave patterns and behaviours intrinsic to the governed system. The simplest equation method enables the derivation of kink and multi-soliton solutions. This method allows for the extraction of solutions characterised by multiple solitary waves propagating without distortion. On the other hand, the extended hyperbolic function method provides anti-bell-shaped, periodic, and singular solutions. These diverse solution types portray various wave patterns and behaviours intrinsic to the equation under study. Additionally, 3D and 2D graphical representations are generated to visually depict the obtained solutions. Hence, this study not only contributes to the comprehension of non-linear wave dynamics in atmospheric science but also imparts knowledge on the broader applicability of mathematical methods in uncovering the underlying intricacies of natural phenomena in different fields of non-linear sciences.
•The Konopelchenko-Dubrovsky equation unveils atmospheric nonlinear wave interaction.•Investigating the interplay between tropical and mid-latitude Rossby waves.•Graphical representations shed light on diverse nonlinear wave behaviours.•Bridging nonlinear wave dynamics with broader applications in sciences.</description><subject>(2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation</subject><subject>Extended hyperbolic function method (EHFM)</subject><subject>Mathematical Model</subject><subject>Multi-solitons</subject><subject>Nonlinear equations</subject><subject>Simplest equation method (SEM)</subject><issn>2211-3797</issn><issn>2211-3797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kFtLAzEQhRdRsNT-AZ_yqMjW3HY3K75IvRULCupzSLKzbdrdpCRrpf_erRXxSRiY4QzfYeYkySnBY4JJfrkcB-vWY4op74WCFfggGVBKSMqKsjj8Mx8noxiXGPcUzzJCBol5CV5bN0fOu8Y6UAF9qg2gautUa028QlMX7XzRRVQH36JuAeiMXpDztLIt9CvvVIOevPNraMwC3Mqntx86-E1cbdHrNnbQniRHtWoijH76MHm_v3ubPKaz54fp5GaWGk5wlzIoBQcDheAiLykozDEjYESOs5qpApc55AKIzjGvQQMTkPUFha4Zq4hiw2S69628Wsp1sK0KW-mVld-CD3OpQmdNA9LoXNEyEzzXhhuhlABc1BXNjFZa07L3onsvE3yMAepfP4LlLnW5lLvU5S51uU-9h673EPRfbiwEGY0FZ6CyAUzXn2H_w78A56mMMg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Fahad, Asfand</creator><creator>Boulaaras, Salah Mahmoud</creator><creator>Rehman, Hamood Ur</creator><creator>Iqbal, Ifrah</creator><creator>Chou, Dean</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9533-1918</orcidid></search><sort><creationdate>202402</creationdate><title>Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System</title><author>Fahad, Asfand ; Boulaaras, Salah Mahmoud ; Rehman, Hamood Ur ; Iqbal, Ifrah ; Chou, Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation</topic><topic>Extended hyperbolic function method (EHFM)</topic><topic>Mathematical Model</topic><topic>Multi-solitons</topic><topic>Nonlinear equations</topic><topic>Simplest equation method (SEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahad, Asfand</creatorcontrib><creatorcontrib>Boulaaras, Salah Mahmoud</creatorcontrib><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Iqbal, Ifrah</creatorcontrib><creatorcontrib>Chou, Dean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahad, Asfand</au><au>Boulaaras, Salah Mahmoud</au><au>Rehman, Hamood Ur</au><au>Iqbal, Ifrah</au><au>Chou, Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System</atitle><jtitle>Results in physics</jtitle><date>2024-02</date><risdate>2024</risdate><volume>57</volume><spage>107370</spage><pages>107370-</pages><artnum>107370</artnum><issn>2211-3797</issn><eissn>2211-3797</eissn><abstract>The (2 + 1)-dimensional Konopelchenko-Dubrovsky system contributes to the field of atmospheric science by investigating the behaviour of nonlinear waves, revealing subtle scattering effects and extended-range interactions within the tropical and mid-latitude troposphere. This equation provides insights into the interplay between equatorial and mid-latitude Rossby waves, capturing their complex interactions and dynamics. Nonlinear waves are significant in atmospheric processes and understanding their dynamics is important for comprehending weather patterns. This study centres around the utilisation of the simplest equation method and extended hyperbolic function method to analyse these waves and derives many solutions that illustrate different wave patterns and behaviours intrinsic to the governed system. The simplest equation method enables the derivation of kink and multi-soliton solutions. This method allows for the extraction of solutions characterised by multiple solitary waves propagating without distortion. On the other hand, the extended hyperbolic function method provides anti-bell-shaped, periodic, and singular solutions. These diverse solution types portray various wave patterns and behaviours intrinsic to the equation under study. Additionally, 3D and 2D graphical representations are generated to visually depict the obtained solutions. Hence, this study not only contributes to the comprehension of non-linear wave dynamics in atmospheric science but also imparts knowledge on the broader applicability of mathematical methods in uncovering the underlying intricacies of natural phenomena in different fields of non-linear sciences.
•The Konopelchenko-Dubrovsky equation unveils atmospheric nonlinear wave interaction.•Investigating the interplay between tropical and mid-latitude Rossby waves.•Graphical representations shed light on diverse nonlinear wave behaviours.•Bridging nonlinear wave dynamics with broader applications in sciences.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rinp.2024.107370</doi><orcidid>https://orcid.org/0000-0001-9533-1918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-3797 |
ispartof | Results in physics, 2024-02, Vol.57, p.107370, Article 107370 |
issn | 2211-3797 2211-3797 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cb6a295846bc4c8aa8e07fd25cbabb29 |
source | Elsevier ScienceDirect Journals |
subjects | (2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation Extended hyperbolic function method (EHFM) Mathematical Model Multi-solitons Nonlinear equations Simplest equation method (SEM) |
title | Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20nonlinear%20wave%20dynamics:%20Insights%20from%20the%20(2+1)-dimensional%20Konopelchenko-Dubrovsky%20System&rft.jtitle=Results%20in%20physics&rft.au=Fahad,%20Asfand&rft.date=2024-02&rft.volume=57&rft.spage=107370&rft.pages=107370-&rft.artnum=107370&rft.issn=2211-3797&rft.eissn=2211-3797&rft_id=info:doi/10.1016/j.rinp.2024.107370&rft_dat=%3Celsevier_doaj_%3ES2211379724000524%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-3e984ece7848692ea04031ec8605f3a7096e68e1b604febe38e58e5e7bf33d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |