Loading…
Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)
Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, composit...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.99 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263 |
container_end_page | |
container_issue | 1 |
container_start_page | 99 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Arshad, Natasha Usman, Muhammad Adnan, Muhammad Ahsan, Muhammad Tayyab Rehman, Mah Rukh Javed, Sofia Ali, Zeeshan Akram, Muhammad Aftab Demopoulos, George P. Mahmood, Asif |
description | Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential. |
doi_str_mv | 10.3390/nano13010099 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437</doaj_id><sourcerecordid>2761984875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</originalsourceid><addsrcrecordid>eNpdks9q3DAQxk1poSHNrQ8g6CWFuitZtiVdCmHZJoE0hvw5C1kaO1psyZXskH2IvnO12VCSzmWGmW9-6EOTZZ8J_k6pwCunnCcUE4yFeJcdFZiJvBSCvH9Vf8xOYtziFIJQXtGj7M91WgPXWwcQrOuR79C1bVa_XFOszht0B8GpsENrP04-2hlQ5wO6j4CsQxe2f8g3DkK_Q7ezD6oHdBZ34whzsBrdLhMErSalbRoi5QxqnnY9OLR59MMyW-_QDSj9XJw2m5uvn7IPnRoinLzk4-z-5-ZufZFfNeeX67OrXJdVNeeKFW1ba8G5qRVLZozhqtWclKlV6bqluOWlIaQzRc00FVzjFtMaMMO8LGp6nF0euMarrZyCHZNH6ZWVzw0feqnCbPUAUrcCC62LVhtS1rVSmBtcdaQsKsVKyhLrx4E1Le0IRoObgxreQN9OnH2QvX-UghdpfQ84fQEE_3uBOMvRRg3DoBz4JcqC1UTwkrMqSb_8J936JX3QcFARURK2d_ftoNLBxxig-_cYguX-VuTrW6F_AXBlsl4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761194176</pqid></control><display><type>article</type><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</creator><creatorcontrib>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</creatorcontrib><description>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13010099</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Asymmetry ; Capacitance ; Carbon ; Catalysts ; Chloride ; Current density ; electrochemical ; Electrochemistry ; Electrodes ; Electrolytes ; energy ; Energy conversion ; Energy resources ; Energy storage ; Ethanol ; Fabrication ; Graphene ; graphene oxide ; Graphite ; Manganese dioxide ; Metal oxides ; MnO2 ; Multi wall carbon nanotubes ; Nanoengineering ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nickel oxides ; NiO ; Oxygen ; Oxygen evolution reactions ; R&D ; Renewable resources ; Research & development ; Retention ; Sandwich structures ; Storage capacity ; supercapacitor</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.99</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</citedby><cites>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</cites><orcidid>0000-0001-8112-5339 ; 0000-0002-6424-3971 ; 0000-0001-6438-438X ; 0000-0002-8293-8953 ; 0000-0003-1338-5563 ; 0000-0003-3297-9578 ; 0000-0002-9437-9562 ; 0000-0002-1645-7852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761194176/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761194176?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Arshad, Natasha</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ahsan, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rehman, Mah Rukh</creatorcontrib><creatorcontrib>Javed, Sofia</creatorcontrib><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Akram, Muhammad Aftab</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><title>Nanomaterials (Basel, Switzerland)</title><description>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</description><subject>Alternative energy sources</subject><subject>Asymmetry</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chloride</subject><subject>Current density</subject><subject>electrochemical</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>energy</subject><subject>Energy conversion</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Graphite</subject><subject>Manganese dioxide</subject><subject>Metal oxides</subject><subject>MnO2</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoengineering</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel oxides</subject><subject>NiO</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>R&D</subject><subject>Renewable resources</subject><subject>Research & development</subject><subject>Retention</subject><subject>Sandwich structures</subject><subject>Storage capacity</subject><subject>supercapacitor</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9q3DAQxk1poSHNrQ8g6CWFuitZtiVdCmHZJoE0hvw5C1kaO1psyZXskH2IvnO12VCSzmWGmW9-6EOTZZ8J_k6pwCunnCcUE4yFeJcdFZiJvBSCvH9Vf8xOYtziFIJQXtGj7M91WgPXWwcQrOuR79C1bVa_XFOszht0B8GpsENrP04-2hlQ5wO6j4CsQxe2f8g3DkK_Q7ezD6oHdBZ34whzsBrdLhMErSalbRoi5QxqnnY9OLR59MMyW-_QDSj9XJw2m5uvn7IPnRoinLzk4-z-5-ZufZFfNeeX67OrXJdVNeeKFW1ba8G5qRVLZozhqtWclKlV6bqluOWlIaQzRc00FVzjFtMaMMO8LGp6nF0euMarrZyCHZNH6ZWVzw0feqnCbPUAUrcCC62LVhtS1rVSmBtcdaQsKsVKyhLrx4E1Le0IRoObgxreQN9OnH2QvX-UghdpfQ84fQEE_3uBOMvRRg3DoBz4JcqC1UTwkrMqSb_8J936JX3QcFARURK2d_ftoNLBxxig-_cYguX-VuTrW6F_AXBlsl4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Arshad, Natasha</creator><creator>Usman, Muhammad</creator><creator>Adnan, Muhammad</creator><creator>Ahsan, Muhammad Tayyab</creator><creator>Rehman, Mah Rukh</creator><creator>Javed, Sofia</creator><creator>Ali, Zeeshan</creator><creator>Akram, Muhammad Aftab</creator><creator>Demopoulos, George P.</creator><creator>Mahmood, Asif</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8112-5339</orcidid><orcidid>https://orcid.org/0000-0002-6424-3971</orcidid><orcidid>https://orcid.org/0000-0001-6438-438X</orcidid><orcidid>https://orcid.org/0000-0002-8293-8953</orcidid><orcidid>https://orcid.org/0000-0003-1338-5563</orcidid><orcidid>https://orcid.org/0000-0003-3297-9578</orcidid><orcidid>https://orcid.org/0000-0002-9437-9562</orcidid><orcidid>https://orcid.org/0000-0002-1645-7852</orcidid></search><sort><creationdate>20230101</creationdate><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><author>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Asymmetry</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chloride</topic><topic>Current density</topic><topic>electrochemical</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>energy</topic><topic>Energy conversion</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Graphite</topic><topic>Manganese dioxide</topic><topic>Metal oxides</topic><topic>MnO2</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoengineering</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel oxides</topic><topic>NiO</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>R&D</topic><topic>Renewable resources</topic><topic>Research & development</topic><topic>Retention</topic><topic>Sandwich structures</topic><topic>Storage capacity</topic><topic>supercapacitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arshad, Natasha</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ahsan, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rehman, Mah Rukh</creatorcontrib><creatorcontrib>Javed, Sofia</creatorcontrib><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Akram, Muhammad Aftab</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arshad, Natasha</au><au>Usman, Muhammad</au><au>Adnan, Muhammad</au><au>Ahsan, Muhammad Tayyab</au><au>Rehman, Mah Rukh</au><au>Javed, Sofia</au><au>Ali, Zeeshan</au><au>Akram, Muhammad Aftab</au><au>Demopoulos, George P.</au><au>Mahmood, Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>99</spage><pages>99-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/nano13010099</doi><orcidid>https://orcid.org/0000-0001-8112-5339</orcidid><orcidid>https://orcid.org/0000-0002-6424-3971</orcidid><orcidid>https://orcid.org/0000-0001-6438-438X</orcidid><orcidid>https://orcid.org/0000-0002-8293-8953</orcidid><orcidid>https://orcid.org/0000-0003-1338-5563</orcidid><orcidid>https://orcid.org/0000-0003-3297-9578</orcidid><orcidid>https://orcid.org/0000-0002-9437-9562</orcidid><orcidid>https://orcid.org/0000-0002-1645-7852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.99 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437 |
source | PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alternative energy sources Asymmetry Capacitance Carbon Catalysts Chloride Current density electrochemical Electrochemistry Electrodes Electrolytes energy Energy conversion Energy resources Energy storage Ethanol Fabrication Graphene graphene oxide Graphite Manganese dioxide Metal oxides MnO2 Multi wall carbon nanotubes Nanoengineering Nanomaterials Nanoparticles Nanotechnology Nanotubes Nickel oxides NiO Oxygen Oxygen evolution reactions R&D Renewable resources Research & development Retention Sandwich structures Storage capacity supercapacitor |
title | Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoengineering%20of%20NiO/MnO2/GO%20Ternary%20Composite%20for%20Use%20in%20High-Energy%20Storage%20Asymmetric%20Supercapacitor%20and%20Oxygen%20Evolution%20Reaction%20(OER)&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Arshad,%20Natasha&rft.date=2023-01-01&rft.volume=13&rft.issue=1&rft.spage=99&rft.pages=99-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13010099&rft_dat=%3Cproquest_doaj_%3E2761984875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761194176&rft_id=info:pmid/&rfr_iscdi=true |