Loading…

Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)

Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, composit...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.99
Main Authors: Arshad, Natasha, Usman, Muhammad, Adnan, Muhammad, Ahsan, Muhammad Tayyab, Rehman, Mah Rukh, Javed, Sofia, Ali, Zeeshan, Akram, Muhammad Aftab, Demopoulos, George P., Mahmood, Asif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263
cites cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263
container_end_page
container_issue 1
container_start_page 99
container_title Nanomaterials (Basel, Switzerland)
container_volume 13
creator Arshad, Natasha
Usman, Muhammad
Adnan, Muhammad
Ahsan, Muhammad Tayyab
Rehman, Mah Rukh
Javed, Sofia
Ali, Zeeshan
Akram, Muhammad Aftab
Demopoulos, George P.
Mahmood, Asif
description Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.
doi_str_mv 10.3390/nano13010099
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437</doaj_id><sourcerecordid>2761984875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</originalsourceid><addsrcrecordid>eNpdks9q3DAQxk1poSHNrQ8g6CWFuitZtiVdCmHZJoE0hvw5C1kaO1psyZXskH2IvnO12VCSzmWGmW9-6EOTZZ8J_k6pwCunnCcUE4yFeJcdFZiJvBSCvH9Vf8xOYtziFIJQXtGj7M91WgPXWwcQrOuR79C1bVa_XFOszht0B8GpsENrP04-2hlQ5wO6j4CsQxe2f8g3DkK_Q7ezD6oHdBZ34whzsBrdLhMErSalbRoi5QxqnnY9OLR59MMyW-_QDSj9XJw2m5uvn7IPnRoinLzk4-z-5-ZufZFfNeeX67OrXJdVNeeKFW1ba8G5qRVLZozhqtWclKlV6bqluOWlIaQzRc00FVzjFtMaMMO8LGp6nF0euMarrZyCHZNH6ZWVzw0feqnCbPUAUrcCC62LVhtS1rVSmBtcdaQsKsVKyhLrx4E1Le0IRoObgxreQN9OnH2QvX-UghdpfQ84fQEE_3uBOMvRRg3DoBz4JcqC1UTwkrMqSb_8J936JX3QcFARURK2d_ftoNLBxxig-_cYguX-VuTrW6F_AXBlsl4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761194176</pqid></control><display><type>article</type><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</creator><creatorcontrib>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</creatorcontrib><description>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13010099</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Asymmetry ; Capacitance ; Carbon ; Catalysts ; Chloride ; Current density ; electrochemical ; Electrochemistry ; Electrodes ; Electrolytes ; energy ; Energy conversion ; Energy resources ; Energy storage ; Ethanol ; Fabrication ; Graphene ; graphene oxide ; Graphite ; Manganese dioxide ; Metal oxides ; MnO2 ; Multi wall carbon nanotubes ; Nanoengineering ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nickel oxides ; NiO ; Oxygen ; Oxygen evolution reactions ; R&amp;D ; Renewable resources ; Research &amp; development ; Retention ; Sandwich structures ; Storage capacity ; supercapacitor</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.99</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</citedby><cites>FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</cites><orcidid>0000-0001-8112-5339 ; 0000-0002-6424-3971 ; 0000-0001-6438-438X ; 0000-0002-8293-8953 ; 0000-0003-1338-5563 ; 0000-0003-3297-9578 ; 0000-0002-9437-9562 ; 0000-0002-1645-7852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761194176/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761194176?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Arshad, Natasha</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ahsan, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rehman, Mah Rukh</creatorcontrib><creatorcontrib>Javed, Sofia</creatorcontrib><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Akram, Muhammad Aftab</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><title>Nanomaterials (Basel, Switzerland)</title><description>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</description><subject>Alternative energy sources</subject><subject>Asymmetry</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chloride</subject><subject>Current density</subject><subject>electrochemical</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>energy</subject><subject>Energy conversion</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Graphite</subject><subject>Manganese dioxide</subject><subject>Metal oxides</subject><subject>MnO2</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoengineering</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel oxides</subject><subject>NiO</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>R&amp;D</subject><subject>Renewable resources</subject><subject>Research &amp; development</subject><subject>Retention</subject><subject>Sandwich structures</subject><subject>Storage capacity</subject><subject>supercapacitor</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9q3DAQxk1poSHNrQ8g6CWFuitZtiVdCmHZJoE0hvw5C1kaO1psyZXskH2IvnO12VCSzmWGmW9-6EOTZZ8J_k6pwCunnCcUE4yFeJcdFZiJvBSCvH9Vf8xOYtziFIJQXtGj7M91WgPXWwcQrOuR79C1bVa_XFOszht0B8GpsENrP04-2hlQ5wO6j4CsQxe2f8g3DkK_Q7ezD6oHdBZ34whzsBrdLhMErSalbRoi5QxqnnY9OLR59MMyW-_QDSj9XJw2m5uvn7IPnRoinLzk4-z-5-ZufZFfNeeX67OrXJdVNeeKFW1ba8G5qRVLZozhqtWclKlV6bqluOWlIaQzRc00FVzjFtMaMMO8LGp6nF0euMarrZyCHZNH6ZWVzw0feqnCbPUAUrcCC62LVhtS1rVSmBtcdaQsKsVKyhLrx4E1Le0IRoObgxreQN9OnH2QvX-UghdpfQ84fQEE_3uBOMvRRg3DoBz4JcqC1UTwkrMqSb_8J936JX3QcFARURK2d_ftoNLBxxig-_cYguX-VuTrW6F_AXBlsl4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Arshad, Natasha</creator><creator>Usman, Muhammad</creator><creator>Adnan, Muhammad</creator><creator>Ahsan, Muhammad Tayyab</creator><creator>Rehman, Mah Rukh</creator><creator>Javed, Sofia</creator><creator>Ali, Zeeshan</creator><creator>Akram, Muhammad Aftab</creator><creator>Demopoulos, George P.</creator><creator>Mahmood, Asif</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8112-5339</orcidid><orcidid>https://orcid.org/0000-0002-6424-3971</orcidid><orcidid>https://orcid.org/0000-0001-6438-438X</orcidid><orcidid>https://orcid.org/0000-0002-8293-8953</orcidid><orcidid>https://orcid.org/0000-0003-1338-5563</orcidid><orcidid>https://orcid.org/0000-0003-3297-9578</orcidid><orcidid>https://orcid.org/0000-0002-9437-9562</orcidid><orcidid>https://orcid.org/0000-0002-1645-7852</orcidid></search><sort><creationdate>20230101</creationdate><title>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</title><author>Arshad, Natasha ; Usman, Muhammad ; Adnan, Muhammad ; Ahsan, Muhammad Tayyab ; Rehman, Mah Rukh ; Javed, Sofia ; Ali, Zeeshan ; Akram, Muhammad Aftab ; Demopoulos, George P. ; Mahmood, Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Asymmetry</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chloride</topic><topic>Current density</topic><topic>electrochemical</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>energy</topic><topic>Energy conversion</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Graphite</topic><topic>Manganese dioxide</topic><topic>Metal oxides</topic><topic>MnO2</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoengineering</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel oxides</topic><topic>NiO</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>R&amp;D</topic><topic>Renewable resources</topic><topic>Research &amp; development</topic><topic>Retention</topic><topic>Sandwich structures</topic><topic>Storage capacity</topic><topic>supercapacitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arshad, Natasha</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ahsan, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rehman, Mah Rukh</creatorcontrib><creatorcontrib>Javed, Sofia</creatorcontrib><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Akram, Muhammad Aftab</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arshad, Natasha</au><au>Usman, Muhammad</au><au>Adnan, Muhammad</au><au>Ahsan, Muhammad Tayyab</au><au>Rehman, Mah Rukh</au><au>Javed, Sofia</au><au>Ali, Zeeshan</au><au>Akram, Muhammad Aftab</au><au>Demopoulos, George P.</au><au>Mahmood, Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>99</spage><pages>99-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Designing multifunctional nanomaterials for high performing electrochemical energy conversion and storage devices has been very challenging. A number of strategies have been reported to introduce multifunctionality in electrode/catalyst materials including alloying, doping, nanostructuring, compositing, etc. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary composite NiO/MnO2/rGO (NMGO) having a range of active sites for enhanced electrochemical activity. The resultant sandwich structure consisted of a mesoporous backbone with NiO and MnO2 nanoparticles encapsulated between successive rGO layers, having different active sites in the form of Ni-, Mn-, and C-based species. The modified structure exhibited high conductivity owing to the presence of rGO, excellent charge storage capacity of 402 F·g−1 at a current density of 1 A·g−1, and stability with a capacitance retention of ~93% after 14,000 cycles. Moreover, the NMGO//MWCNT asymmetric device, assembled with NMGO and multi-wall carbon nanotubes (MWCNTs) as positive and negative electrodes, respectively, exhibited good energy density (28 Wh·kg−1), excellent power density (750 W·kg−1), and capacitance retention (88%) after 6000 cycles. To evaluate the multifunctionality of the modified nanostructure, the NMGO was also tested for its oxygen evolution reaction (OER) activity. The NMGO delivered a current density of 10 mA·cm−2 at the potential of 1.59 V versus RHE. These results clearly demonstrate high activity of the modified electrode with strong future potential.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/nano13010099</doi><orcidid>https://orcid.org/0000-0001-8112-5339</orcidid><orcidid>https://orcid.org/0000-0002-6424-3971</orcidid><orcidid>https://orcid.org/0000-0001-6438-438X</orcidid><orcidid>https://orcid.org/0000-0002-8293-8953</orcidid><orcidid>https://orcid.org/0000-0003-1338-5563</orcidid><orcidid>https://orcid.org/0000-0003-3297-9578</orcidid><orcidid>https://orcid.org/0000-0002-9437-9562</orcidid><orcidid>https://orcid.org/0000-0002-1645-7852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.99
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cb909cc2bcd1466aa08d05f1425a7437
source PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alternative energy sources
Asymmetry
Capacitance
Carbon
Catalysts
Chloride
Current density
electrochemical
Electrochemistry
Electrodes
Electrolytes
energy
Energy conversion
Energy resources
Energy storage
Ethanol
Fabrication
Graphene
graphene oxide
Graphite
Manganese dioxide
Metal oxides
MnO2
Multi wall carbon nanotubes
Nanoengineering
Nanomaterials
Nanoparticles
Nanotechnology
Nanotubes
Nickel oxides
NiO
Oxygen
Oxygen evolution reactions
R&D
Renewable resources
Research & development
Retention
Sandwich structures
Storage capacity
supercapacitor
title Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoengineering%20of%20NiO/MnO2/GO%20Ternary%20Composite%20for%20Use%20in%20High-Energy%20Storage%20Asymmetric%20Supercapacitor%20and%20Oxygen%20Evolution%20Reaction%20(OER)&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Arshad,%20Natasha&rft.date=2023-01-01&rft.volume=13&rft.issue=1&rft.spage=99&rft.pages=99-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13010099&rft_dat=%3Cproquest_doaj_%3E2761984875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a72bb6c988d6a7009dd8abc8149885c6b30b84d11fd267c398c0b036e07084263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761194176&rft_id=info:pmid/&rfr_iscdi=true