Loading…
Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets
Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomnes...
Saved in:
Published in: | Fractal and fractional 2022-10, Vol.6 (10), p.536 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3 |
container_end_page | |
container_issue | 10 |
container_start_page | 536 |
container_title | Fractal and fractional |
container_volume | 6 |
creator | Zhang, Jinping Zhang, Keming |
description | Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios. |
doi_str_mv | 10.3390/fractalfract6100536 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733</doaj_id><sourcerecordid>2728470994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</originalsourceid><addsrcrecordid>eNptkU9vFDEMxUcIJKq2n6CXSFzgMJCJJ5PkCMu_lVpRtaXXyJM4MLvppiRZpJ754p3dRRUHTrafnn-W_JrmrONvAQx_FzK6inFfho5zCcOz5khI3rfQdfz5P_3L5rSUFedcKAOSq6Pmz2XKNaQ4JXZNkVyd0oZdJE-xsA9YyLN5Xm4q5d8Y21uM21lapI2fdk6MbC-1WNurqazZ6-XiFq_eMNzMrnmdXdetf9gx6k9iH7EiCzndzXJya3aBeU21nDQvAsZCp3_rcfP986ebxdf2_NuX5eL9eevEoGs79By4VMJI41TnvOiHwM04KjEqCUZwgKAJhPHSSBdG0qC7ENTouVdaIxw3ywPXJ1zZ-zzdYX6wCSe7F1L-YTHXyUWybjTYkQMHauwleSTTGwdktFZBAcysVwfWfU6_tlSqXaVtnh9SrFBC94ob088uOLhcTqVkCk9XO2534dn_hAePws6PcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728470994</pqid></control><display><type>article</type><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Jinping ; Zhang, Keming</creator><creatorcontrib>Zhang, Jinping ; Zhang, Keming</creatorcontrib><description>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract6100536</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Capital assets ; Case studies ; conditional value-at-risk (CVaR) ; Financing ; interval-valued random variable ; Investments ; Linear programming ; Optimization ; portfolio selection ; Prices ; Project evaluation ; R&D ; Random variables ; Research & development ; Risk management ; Securities markets ; Stock exchanges ; Uncertainty ; value-at-risk (VaR)</subject><ispartof>Fractal and fractional, 2022-10, Vol.6 (10), p.536</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</cites><orcidid>0000-0001-8205-0228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728470994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728470994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Zhang, Jinping</creatorcontrib><creatorcontrib>Zhang, Keming</creatorcontrib><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><title>Fractal and fractional</title><description>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</description><subject>Capital assets</subject><subject>Case studies</subject><subject>conditional value-at-risk (CVaR)</subject><subject>Financing</subject><subject>interval-valued random variable</subject><subject>Investments</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>portfolio selection</subject><subject>Prices</subject><subject>Project evaluation</subject><subject>R&D</subject><subject>Random variables</subject><subject>Research & development</subject><subject>Risk management</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Uncertainty</subject><subject>value-at-risk (VaR)</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU9vFDEMxUcIJKq2n6CXSFzgMJCJJ5PkCMu_lVpRtaXXyJM4MLvppiRZpJ754p3dRRUHTrafnn-W_JrmrONvAQx_FzK6inFfho5zCcOz5khI3rfQdfz5P_3L5rSUFedcKAOSq6Pmz2XKNaQ4JXZNkVyd0oZdJE-xsA9YyLN5Xm4q5d8Y21uM21lapI2fdk6MbC-1WNurqazZ6-XiFq_eMNzMrnmdXdetf9gx6k9iH7EiCzndzXJya3aBeU21nDQvAsZCp3_rcfP986ebxdf2_NuX5eL9eevEoGs79By4VMJI41TnvOiHwM04KjEqCUZwgKAJhPHSSBdG0qC7ENTouVdaIxw3ywPXJ1zZ-zzdYX6wCSe7F1L-YTHXyUWybjTYkQMHauwleSTTGwdktFZBAcysVwfWfU6_tlSqXaVtnh9SrFBC94ob088uOLhcTqVkCk9XO2534dn_hAePws6PcQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Jinping</creator><creator>Zhang, Keming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X5</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8205-0228</orcidid></search><sort><creationdate>20221001</creationdate><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><author>Zhang, Jinping ; Zhang, Keming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capital assets</topic><topic>Case studies</topic><topic>conditional value-at-risk (CVaR)</topic><topic>Financing</topic><topic>interval-valued random variable</topic><topic>Investments</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>portfolio selection</topic><topic>Prices</topic><topic>Project evaluation</topic><topic>R&D</topic><topic>Random variables</topic><topic>Research & development</topic><topic>Risk management</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Uncertainty</topic><topic>value-at-risk (VaR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinping</creatorcontrib><creatorcontrib>Zhang, Keming</creatorcontrib><collection>CrossRef</collection><collection>Entrepreneurship Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinping</au><au>Zhang, Keming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</atitle><jtitle>Fractal and fractional</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>6</volume><issue>10</issue><spage>536</spage><pages>536-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract6100536</doi><orcidid>https://orcid.org/0000-0001-8205-0228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2022-10, Vol.6 (10), p.536 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733 |
source | Publicly Available Content (ProQuest) |
subjects | Capital assets Case studies conditional value-at-risk (CVaR) Financing interval-valued random variable Investments Linear programming Optimization portfolio selection Prices Project evaluation R&D Random variables Research & development Risk management Securities markets Stock exchanges Uncertainty value-at-risk (VaR) |
title | Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20Selection%20Models%20Based%20on%20Interval-Valued%20Conditional%20Value-at-Risk%20(ICVaR)%20and%20Case%20Study%20on%20the%20Data%20from%20Stock%20Markets&rft.jtitle=Fractal%20and%20fractional&rft.au=Zhang,%20Jinping&rft.date=2022-10-01&rft.volume=6&rft.issue=10&rft.spage=536&rft.pages=536-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract6100536&rft_dat=%3Cproquest_doaj_%3E2728470994%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728470994&rft_id=info:pmid/&rfr_iscdi=true |