Loading…

Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets

Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomnes...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2022-10, Vol.6 (10), p.536
Main Authors: Zhang, Jinping, Zhang, Keming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3
container_end_page
container_issue 10
container_start_page 536
container_title Fractal and fractional
container_volume 6
creator Zhang, Jinping
Zhang, Keming
description Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.
doi_str_mv 10.3390/fractalfract6100536
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733</doaj_id><sourcerecordid>2728470994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</originalsourceid><addsrcrecordid>eNptkU9vFDEMxUcIJKq2n6CXSFzgMJCJJ5PkCMu_lVpRtaXXyJM4MLvppiRZpJ754p3dRRUHTrafnn-W_JrmrONvAQx_FzK6inFfho5zCcOz5khI3rfQdfz5P_3L5rSUFedcKAOSq6Pmz2XKNaQ4JXZNkVyd0oZdJE-xsA9YyLN5Xm4q5d8Y21uM21lapI2fdk6MbC-1WNurqazZ6-XiFq_eMNzMrnmdXdetf9gx6k9iH7EiCzndzXJya3aBeU21nDQvAsZCp3_rcfP986ebxdf2_NuX5eL9eevEoGs79By4VMJI41TnvOiHwM04KjEqCUZwgKAJhPHSSBdG0qC7ENTouVdaIxw3ywPXJ1zZ-zzdYX6wCSe7F1L-YTHXyUWybjTYkQMHauwleSTTGwdktFZBAcysVwfWfU6_tlSqXaVtnh9SrFBC94ob088uOLhcTqVkCk9XO2534dn_hAePws6PcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728470994</pqid></control><display><type>article</type><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Jinping ; Zhang, Keming</creator><creatorcontrib>Zhang, Jinping ; Zhang, Keming</creatorcontrib><description>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract6100536</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Capital assets ; Case studies ; conditional value-at-risk (CVaR) ; Financing ; interval-valued random variable ; Investments ; Linear programming ; Optimization ; portfolio selection ; Prices ; Project evaluation ; R&amp;D ; Random variables ; Research &amp; development ; Risk management ; Securities markets ; Stock exchanges ; Uncertainty ; value-at-risk (VaR)</subject><ispartof>Fractal and fractional, 2022-10, Vol.6 (10), p.536</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</cites><orcidid>0000-0001-8205-0228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728470994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728470994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Zhang, Jinping</creatorcontrib><creatorcontrib>Zhang, Keming</creatorcontrib><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><title>Fractal and fractional</title><description>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</description><subject>Capital assets</subject><subject>Case studies</subject><subject>conditional value-at-risk (CVaR)</subject><subject>Financing</subject><subject>interval-valued random variable</subject><subject>Investments</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>portfolio selection</subject><subject>Prices</subject><subject>Project evaluation</subject><subject>R&amp;D</subject><subject>Random variables</subject><subject>Research &amp; development</subject><subject>Risk management</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Uncertainty</subject><subject>value-at-risk (VaR)</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU9vFDEMxUcIJKq2n6CXSFzgMJCJJ5PkCMu_lVpRtaXXyJM4MLvppiRZpJ754p3dRRUHTrafnn-W_JrmrONvAQx_FzK6inFfho5zCcOz5khI3rfQdfz5P_3L5rSUFedcKAOSq6Pmz2XKNaQ4JXZNkVyd0oZdJE-xsA9YyLN5Xm4q5d8Y21uM21lapI2fdk6MbC-1WNurqazZ6-XiFq_eMNzMrnmdXdetf9gx6k9iH7EiCzndzXJya3aBeU21nDQvAsZCp3_rcfP986ebxdf2_NuX5eL9eevEoGs79By4VMJI41TnvOiHwM04KjEqCUZwgKAJhPHSSBdG0qC7ENTouVdaIxw3ywPXJ1zZ-zzdYX6wCSe7F1L-YTHXyUWybjTYkQMHauwleSTTGwdktFZBAcysVwfWfU6_tlSqXaVtnh9SrFBC94ob088uOLhcTqVkCk9XO2534dn_hAePws6PcQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Jinping</creator><creator>Zhang, Keming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X5</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8205-0228</orcidid></search><sort><creationdate>20221001</creationdate><title>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</title><author>Zhang, Jinping ; Zhang, Keming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capital assets</topic><topic>Case studies</topic><topic>conditional value-at-risk (CVaR)</topic><topic>Financing</topic><topic>interval-valued random variable</topic><topic>Investments</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>portfolio selection</topic><topic>Prices</topic><topic>Project evaluation</topic><topic>R&amp;D</topic><topic>Random variables</topic><topic>Research &amp; development</topic><topic>Risk management</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Uncertainty</topic><topic>value-at-risk (VaR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinping</creatorcontrib><creatorcontrib>Zhang, Keming</creatorcontrib><collection>CrossRef</collection><collection>Entrepreneurship Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinping</au><au>Zhang, Keming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets</atitle><jtitle>Fractal and fractional</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>6</volume><issue>10</issue><spage>536</spage><pages>536-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>Risk management is very important for individual investors or companies. There are several ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty including both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe returns of a risk asset and define an interval-valued risk measurement, which considers the tail risk. It is called the interval-valued conditional value-at-risk (ICVaR, for short). Similar to the classical conditional value-at-risk, ICVaR satisfies the sub-additivity. Under the new risk measure ICVaR, as a manner similar to the classical Mean-CVaR portfolio model, two optimal interval-valued portfolio selection models are built. The sub-additivity of ICVaR guarantees the global optimal solution to the Mean-ICVaR portfolio model. Based on the real data from mainland Chinese stock markets and international stock markets, the case study shows that our models are interpretable and consistent with the practical scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract6100536</doi><orcidid>https://orcid.org/0000-0001-8205-0228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2022-10, Vol.6 (10), p.536
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cb9a1ec3c37b45edae949c3e9887f733
source Publicly Available Content (ProQuest)
subjects Capital assets
Case studies
conditional value-at-risk (CVaR)
Financing
interval-valued random variable
Investments
Linear programming
Optimization
portfolio selection
Prices
Project evaluation
R&D
Random variables
Research & development
Risk management
Securities markets
Stock exchanges
Uncertainty
value-at-risk (VaR)
title Portfolio Selection Models Based on Interval-Valued Conditional Value-at-Risk (ICVaR) and Case Study on the Data from Stock Markets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20Selection%20Models%20Based%20on%20Interval-Valued%20Conditional%20Value-at-Risk%20(ICVaR)%20and%20Case%20Study%20on%20the%20Data%20from%20Stock%20Markets&rft.jtitle=Fractal%20and%20fractional&rft.au=Zhang,%20Jinping&rft.date=2022-10-01&rft.volume=6&rft.issue=10&rft.spage=536&rft.pages=536-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract6100536&rft_dat=%3Cproquest_doaj_%3E2728470994%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-64030572959c71cd246f09bb72b75392033f8e329d595cfbe8381ff7bd0d788a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728470994&rft_id=info:pmid/&rfr_iscdi=true