Loading…

Effect of Several Nutrients and Environmental Conditions on Intracellular Melatonin Synthesis in Saccharomyces cerevisiae

Melatonin is a bioactive compound that is present in fermented beverages and has been described to be synthesized by yeast during alcoholic fermentation. The aim of this study was to assess the capacity of intracellular and extracellular melatonin production by different Saccharomyces strains from d...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2020-06, Vol.8 (6), p.853
Main Authors: Morcillo-Parra, María Ángeles, Beltran, Gemma, Mas, Albert, Torija, María-Jesús
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Melatonin is a bioactive compound that is present in fermented beverages and has been described to be synthesized by yeast during alcoholic fermentation. The aim of this study was to assess the capacity of intracellular and extracellular melatonin production by different Saccharomyces strains from diverse food origin and to study the effects of different fermentation parameters, such as sugar and nitrogen concentration, temperature or initial population, on melatonin production using a synthetic grape must medium. Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry. Intracellular melatonin synthesis profile did not present differences between yeast strains. However, extracellular melatonin production depended on the yeast origin. Thus, we suggest that melatonin production and secretion during the different yeast growth phases follows a species-specific pattern. Other parameters that affected the fermentation process such as sugar content and low temperature had an impact on intracellular melatonin production profile, as well as the melatonin content within the cell. This study reports the effect of several conditions on the melatonin synthesis profile, highlighting its possible role as a signal molecule.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms8060853