Loading…
Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm
The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen pro...
Saved in:
Published in: | Journal of modern power systems and clean energy 2018-01, Vol.6 (1), p.40-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 40 |
container_title | Journal of modern power systems and clean energy |
container_volume | 6 |
creator | KHALILNEJAD, Arash SUNDARARAJAN, Aditya SARWAT, Arif I. |
description | The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system. |
doi_str_mv | 10.1007/s40565-017-0293-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa</doaj_id><sourcerecordid>1993310465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</originalsourceid><addsrcrecordid>eNp1Uctu1TAQjRBIVG0_gJ0l1qFjO3Gul6jiUalSN7C2_BjnukriYDuFy4Zfr0sAdcNsPDM658yMT9O8ofCOAgxXuYNe9C3QoQUmeQsvmjNGpWj7jsHLv7lg_evmMudggMsDBcm7s-bX3VrCrCfiMIdxIdGT48mk4Mj3sLir9RhLfIhT0cESnNCWFKfTT0zEx0Rm_SPM21wZLsURF7Km6DZbQlzIlsMykjCvmIKeQi7ExlqUUMIDEj2NMYVynC-aV15PGS__vOfN148fvlx_bm_vPt1cv79tbc-htCiAuk6wgUnntQduPQONhnnX9zhYkHoYODOHGqgZM9zLXng5gDSOMsrPm5td10V9r9ZUb04nFXVQvxsxjUqnEuyEyhrDHQqNgvmOsvpPBr2Q-iClo6B11Xq7a9Vzv22Yi7qPW1rq-opKyTmFTvQVRXeUTTHnhP7fVArqyTa126aqberJNgWVw3ZOrthlxPRM-b-kRw6bnjI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993310465</pqid></control><display><type>article</type><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><source>IEEE Xplore All Journals</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</creator><creatorcontrib>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</creatorcontrib><description>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</description><identifier>ISSN: 2196-5625</identifier><identifier>EISSN: 2196-5420</identifier><identifier>DOI: 10.1007/s40565-017-0293-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer simulation ; Electric power generation ; Electrical Machines and Networks ; Electrolyzer ; Energy ; Energy Systems ; Evolutionary algorithms ; Hybrid systems ; Hydrogen ; Hydrogen production ; Hydrogen storage ; Imperialist competitive algorithm (ICA) ; Photovoltaic ; Photovoltaic cells ; Power Electronics ; Renewable and Green Energy ; Solar cells ; Storage systems ; Wind turbine ; Wind turbines</subject><ispartof>Journal of modern power systems and clean energy, 2018-01, Vol.6 (1), p.40-49</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</citedby><cites>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1993310465/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1993310465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>KHALILNEJAD, Arash</creatorcontrib><creatorcontrib>SUNDARARAJAN, Aditya</creatorcontrib><creatorcontrib>SARWAT, Arif I.</creatorcontrib><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><title>Journal of modern power systems and clean energy</title><addtitle>J. Mod. Power Syst. Clean Energy</addtitle><description>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</description><subject>Computer simulation</subject><subject>Electric power generation</subject><subject>Electrical Machines and Networks</subject><subject>Electrolyzer</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Evolutionary algorithms</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>Imperialist competitive algorithm (ICA)</subject><subject>Photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Power Electronics</subject><subject>Renewable and Green Energy</subject><subject>Solar cells</subject><subject>Storage systems</subject><subject>Wind turbine</subject><subject>Wind turbines</subject><issn>2196-5625</issn><issn>2196-5420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uctu1TAQjRBIVG0_gJ0l1qFjO3Gul6jiUalSN7C2_BjnukriYDuFy4Zfr0sAdcNsPDM658yMT9O8ofCOAgxXuYNe9C3QoQUmeQsvmjNGpWj7jsHLv7lg_evmMudggMsDBcm7s-bX3VrCrCfiMIdxIdGT48mk4Mj3sLir9RhLfIhT0cESnNCWFKfTT0zEx0Rm_SPM21wZLsURF7Km6DZbQlzIlsMykjCvmIKeQi7ExlqUUMIDEj2NMYVynC-aV15PGS__vOfN148fvlx_bm_vPt1cv79tbc-htCiAuk6wgUnntQduPQONhnnX9zhYkHoYODOHGqgZM9zLXng5gDSOMsrPm5td10V9r9ZUb04nFXVQvxsxjUqnEuyEyhrDHQqNgvmOsvpPBr2Q-iClo6B11Xq7a9Vzv22Yi7qPW1rq-opKyTmFTvQVRXeUTTHnhP7fVArqyTa126aqberJNgWVw3ZOrthlxPRM-b-kRw6bnjI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>KHALILNEJAD, Arash</creator><creator>SUNDARARAJAN, Aditya</creator><creator>SARWAT, Arif I.</creator><general>Springer Berlin Heidelberg</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><author>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Electric power generation</topic><topic>Electrical Machines and Networks</topic><topic>Electrolyzer</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Evolutionary algorithms</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>Imperialist competitive algorithm (ICA)</topic><topic>Photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Power Electronics</topic><topic>Renewable and Green Energy</topic><topic>Solar cells</topic><topic>Storage systems</topic><topic>Wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHALILNEJAD, Arash</creatorcontrib><creatorcontrib>SUNDARARAJAN, Aditya</creatorcontrib><creatorcontrib>SARWAT, Arif I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of modern power systems and clean energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHALILNEJAD, Arash</au><au>SUNDARARAJAN, Aditya</au><au>SARWAT, Arif I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</atitle><jtitle>Journal of modern power systems and clean energy</jtitle><stitle>J. Mod. Power Syst. Clean Energy</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>1</issue><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>2196-5625</issn><eissn>2196-5420</eissn><abstract>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40565-017-0293-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-5625 |
ispartof | Journal of modern power systems and clean energy, 2018-01, Vol.6 (1), p.40-49 |
issn | 2196-5625 2196-5420 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa |
source | IEEE Xplore All Journals; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Computer simulation Electric power generation Electrical Machines and Networks Electrolyzer Energy Energy Systems Evolutionary algorithms Hybrid systems Hydrogen Hydrogen production Hydrogen storage Imperialist competitive algorithm (ICA) Photovoltaic Photovoltaic cells Power Electronics Renewable and Green Energy Solar cells Storage systems Wind turbine Wind turbines |
title | Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20hybrid%20wind/photovoltaic%20electrolyzer%20for%20maximum%20hydrogen%20production%20using%20imperialist%20competitive%20algorithm&rft.jtitle=Journal%20of%20modern%20power%20systems%20and%20clean%20energy&rft.au=KHALILNEJAD,%20Arash&rft.date=2018-01-01&rft.volume=6&rft.issue=1&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=2196-5625&rft.eissn=2196-5420&rft_id=info:doi/10.1007/s40565-017-0293-0&rft_dat=%3Cproquest_doaj_%3E1993310465%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993310465&rft_id=info:pmid/&rfr_iscdi=true |