Loading…

Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm

The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen pro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern power systems and clean energy 2018-01, Vol.6 (1), p.40-49
Main Authors: KHALILNEJAD, Arash, SUNDARARAJAN, Aditya, SARWAT, Arif I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213
cites cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213
container_end_page 49
container_issue 1
container_start_page 40
container_title Journal of modern power systems and clean energy
container_volume 6
creator KHALILNEJAD, Arash
SUNDARARAJAN, Aditya
SARWAT, Arif I.
description The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.
doi_str_mv 10.1007/s40565-017-0293-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa</doaj_id><sourcerecordid>1993310465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</originalsourceid><addsrcrecordid>eNp1Uctu1TAQjRBIVG0_gJ0l1qFjO3Gul6jiUalSN7C2_BjnukriYDuFy4Zfr0sAdcNsPDM658yMT9O8ofCOAgxXuYNe9C3QoQUmeQsvmjNGpWj7jsHLv7lg_evmMudggMsDBcm7s-bX3VrCrCfiMIdxIdGT48mk4Mj3sLir9RhLfIhT0cESnNCWFKfTT0zEx0Rm_SPM21wZLsURF7Km6DZbQlzIlsMykjCvmIKeQi7ExlqUUMIDEj2NMYVynC-aV15PGS__vOfN148fvlx_bm_vPt1cv79tbc-htCiAuk6wgUnntQduPQONhnnX9zhYkHoYODOHGqgZM9zLXng5gDSOMsrPm5td10V9r9ZUb04nFXVQvxsxjUqnEuyEyhrDHQqNgvmOsvpPBr2Q-iClo6B11Xq7a9Vzv22Yi7qPW1rq-opKyTmFTvQVRXeUTTHnhP7fVArqyTa126aqberJNgWVw3ZOrthlxPRM-b-kRw6bnjI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993310465</pqid></control><display><type>article</type><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><source>IEEE Xplore All Journals</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</creator><creatorcontrib>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</creatorcontrib><description>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</description><identifier>ISSN: 2196-5625</identifier><identifier>EISSN: 2196-5420</identifier><identifier>DOI: 10.1007/s40565-017-0293-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer simulation ; Electric power generation ; Electrical Machines and Networks ; Electrolyzer ; Energy ; Energy Systems ; Evolutionary algorithms ; Hybrid systems ; Hydrogen ; Hydrogen production ; Hydrogen storage ; Imperialist competitive algorithm (ICA) ; Photovoltaic ; Photovoltaic cells ; Power Electronics ; Renewable and Green Energy ; Solar cells ; Storage systems ; Wind turbine ; Wind turbines</subject><ispartof>Journal of modern power systems and clean energy, 2018-01, Vol.6 (1), p.40-49</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</citedby><cites>FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1993310465/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1993310465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>KHALILNEJAD, Arash</creatorcontrib><creatorcontrib>SUNDARARAJAN, Aditya</creatorcontrib><creatorcontrib>SARWAT, Arif I.</creatorcontrib><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><title>Journal of modern power systems and clean energy</title><addtitle>J. Mod. Power Syst. Clean Energy</addtitle><description>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</description><subject>Computer simulation</subject><subject>Electric power generation</subject><subject>Electrical Machines and Networks</subject><subject>Electrolyzer</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Evolutionary algorithms</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>Imperialist competitive algorithm (ICA)</subject><subject>Photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Power Electronics</subject><subject>Renewable and Green Energy</subject><subject>Solar cells</subject><subject>Storage systems</subject><subject>Wind turbine</subject><subject>Wind turbines</subject><issn>2196-5625</issn><issn>2196-5420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uctu1TAQjRBIVG0_gJ0l1qFjO3Gul6jiUalSN7C2_BjnukriYDuFy4Zfr0sAdcNsPDM658yMT9O8ofCOAgxXuYNe9C3QoQUmeQsvmjNGpWj7jsHLv7lg_evmMudggMsDBcm7s-bX3VrCrCfiMIdxIdGT48mk4Mj3sLir9RhLfIhT0cESnNCWFKfTT0zEx0Rm_SPM21wZLsURF7Km6DZbQlzIlsMykjCvmIKeQi7ExlqUUMIDEj2NMYVynC-aV15PGS__vOfN148fvlx_bm_vPt1cv79tbc-htCiAuk6wgUnntQduPQONhnnX9zhYkHoYODOHGqgZM9zLXng5gDSOMsrPm5td10V9r9ZUb04nFXVQvxsxjUqnEuyEyhrDHQqNgvmOsvpPBr2Q-iClo6B11Xq7a9Vzv22Yi7qPW1rq-opKyTmFTvQVRXeUTTHnhP7fVArqyTa126aqberJNgWVw3ZOrthlxPRM-b-kRw6bnjI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>KHALILNEJAD, Arash</creator><creator>SUNDARARAJAN, Aditya</creator><creator>SARWAT, Arif I.</creator><general>Springer Berlin Heidelberg</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</title><author>KHALILNEJAD, Arash ; SUNDARARAJAN, Aditya ; SARWAT, Arif I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Electric power generation</topic><topic>Electrical Machines and Networks</topic><topic>Electrolyzer</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Evolutionary algorithms</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>Imperialist competitive algorithm (ICA)</topic><topic>Photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Power Electronics</topic><topic>Renewable and Green Energy</topic><topic>Solar cells</topic><topic>Storage systems</topic><topic>Wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHALILNEJAD, Arash</creatorcontrib><creatorcontrib>SUNDARARAJAN, Aditya</creatorcontrib><creatorcontrib>SARWAT, Arif I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of modern power systems and clean energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHALILNEJAD, Arash</au><au>SUNDARARAJAN, Aditya</au><au>SARWAT, Arif I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm</atitle><jtitle>Journal of modern power systems and clean energy</jtitle><stitle>J. Mod. Power Syst. Clean Energy</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>1</issue><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>2196-5625</issn><eissn>2196-5420</eissn><abstract>The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40565-017-0293-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-5625
ispartof Journal of modern power systems and clean energy, 2018-01, Vol.6 (1), p.40-49
issn 2196-5625
2196-5420
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cbb3de6ae62f412093bef69a899d10aa
source IEEE Xplore All Journals; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Computer simulation
Electric power generation
Electrical Machines and Networks
Electrolyzer
Energy
Energy Systems
Evolutionary algorithms
Hybrid systems
Hydrogen
Hydrogen production
Hydrogen storage
Imperialist competitive algorithm (ICA)
Photovoltaic
Photovoltaic cells
Power Electronics
Renewable and Green Energy
Solar cells
Storage systems
Wind turbine
Wind turbines
title Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20hybrid%20wind/photovoltaic%20electrolyzer%20for%20maximum%20hydrogen%20production%20using%20imperialist%20competitive%20algorithm&rft.jtitle=Journal%20of%20modern%20power%20systems%20and%20clean%20energy&rft.au=KHALILNEJAD,%20Arash&rft.date=2018-01-01&rft.volume=6&rft.issue=1&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=2196-5625&rft.eissn=2196-5420&rft_id=info:doi/10.1007/s40565-017-0293-0&rft_dat=%3Cproquest_doaj_%3E1993310465%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-e601d462729dfaf03cf20aeb2fd55e7c09a7732b8888ea22b3f956f9709bd1213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993310465&rft_id=info:pmid/&rfr_iscdi=true