Loading…

Evaluation of the effect of follicular stimulating hormone on the in vitro bovine spermatogonial stem cells self-renewal: An experimental study

Spermatogonial stem cells (SSCs) are undifferentiated cells which are highly reproducible and expandable. Several studies have been conducted to reproduce these cells in culture. They used growth factors, hormones and different feeder cells to improve survival and proliferation of SSCs. This study w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of reproductive biomedicine (Yazd, Iran) Iran), 2017-12, Vol.15 (12), p.795-802
Main Authors: Jabarpour, Masoome, Tajik, Parviz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spermatogonial stem cells (SSCs) are undifferentiated cells which are highly reproducible and expandable. Several studies have been conducted to reproduce these cells in culture. They used growth factors, hormones and different feeder cells to improve survival and proliferation of SSCs. This study was conducted to evaluate the effects of follicular stimulating hormone (FSH) on gene expression of fibroblast growth factor (FGF2) and glial cell-derived neurotrophic factor (GDNF) in Sertoli cells. Sertoli cells and SSCs were isolated from 3-5 month-old calves. Bovine testicular cells were cultured for 15 days with or without FSH. Identification of these cells was confirmed by immunocytochemistry analysis. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of FGF2 and GDNF and the gene markers bcl6b, thy-1, and C-kit were evaluated using the quantitative RT-PCR technique. The results indicated that FSH increased colonization of SSCs. the expression of GDNF, FGF2, and markers of undifferentiated spermatogonia was increased following culture in control and FSH groups (p
ISSN:2476-4108
2476-3772
DOI:10.29252/ijrm.15.12.795