Loading…
Two-dimensional quantitative near-field phase imaging using square and hexagonal interference devices
We demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarizatio...
Saved in:
Published in: | Nanophotonics (Berlin, Germany) Germany), 2022-09, Vol.11 (19), p.4375-4386 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarization of the external illumination and the area of the device assigned to the object wave. A comparison of the experimental data to a numerical electromagnetic model and an analytical model assigns the origin of the near-field phase to the out-of-plane electric component of surface plasmon polaritons, and also verifies the predictive power of the models. We demonstrate a formation of near-field plane waves with different propagation directions on a single device, or even simultaneously at distinct areas of a single device. Our findings open the way to the imaging and tomography of phase objects in the near field. |
---|---|
ISSN: | 2192-8614 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2022-0215 |