Loading…

Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover

Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mito...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2021-06, Vol.10 (6), p.938
Main Authors: Drabik, Karolina, Malińska, Dominika, Piecyk, Karolina, Dębska-Vielhaber, Grażyna, Vielhaber, Stefan, Duszyński, Jerzy, Szczepanowska, Joanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3
cites cdi_FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3
container_end_page
container_issue 6
container_start_page 938
container_title Antioxidants
container_volume 10
creator Drabik, Karolina
Malińska, Dominika
Piecyk, Karolina
Dębska-Vielhaber, Grażyna
Vielhaber, Stefan
Duszyński, Jerzy
Szczepanowska, Joanna
description Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.
doi_str_mv 10.3390/antiox10060938
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cbfc1c781273493ba8be311df1637f06</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cbfc1c781273493ba8be311df1637f06</doaj_id><sourcerecordid>2548404797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3</originalsourceid><addsrcrecordid>eNpdkk1rVDEUhoMottRuXQfcuJmaj3vzsRHKtKOFioXWdcjNRyfDvcmY5I76Q_y_ZpwiTrNIQs7Dw8nLAeAtRheUSvRBxxrST4wQQ5KKF-CUIM4WVBL88r_7CTgvZYPakpgKJF-DE9oRhHqBT8Hva--dqTB5uFznFIOB9zW7UuBd212sMES4CkNOw6hLLfDK5bBzFvqcJnina2hMgT9CXUMN77cpa9scq5SnvfPyCqYIv4SazDpFm4Me4WqOpvUdoY72WelhzjHtXH4DXnk9Fnf-dJ6Bb6vrh-Xnxe3XTzfLy9uF6RiuC2419bzDgxG0Z1p6IeTQvoWN0D0nxkrrUG-87SjrJEVC-IH1qGcEM2adpmfg5uC1SW_UNodJ518q6aD-PqT8qHSuwYxOmcEbbLjAhNPmGrQYHMXYeswo94g118eDazsPk7Om5ZL1eCQ9rsSwVo9ppwQhEhHZBO-fBDl9n12pagrFuHHU0aW5KNJ3okMdl7yh756hm9Sia1Htqa7niEvSqIsDZXIqJTv_rxmM1H6A1PEA0T_sEbnt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544570792</pqid></control><display><type>article</type><title>Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Drabik, Karolina ; Malińska, Dominika ; Piecyk, Karolina ; Dębska-Vielhaber, Grażyna ; Vielhaber, Stefan ; Duszyński, Jerzy ; Szczepanowska, Joanna</creator><creatorcontrib>Drabik, Karolina ; Malińska, Dominika ; Piecyk, Karolina ; Dębska-Vielhaber, Grażyna ; Vielhaber, Stefan ; Duszyński, Jerzy ; Szczepanowska, Joanna</creatorcontrib><description>Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox10060938</identifier><identifier>PMID: 34200581</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Alzheimer's disease ; Antibiotics ; Antibodies ; Antioxidants ; Autophagy ; Biosynthesis ; Cellular stress response ; Experiments ; Fibroblasts ; Homeostasis ; Mitochondria ; mitochondrial biogenesis ; mitochondrial retrograde signaling ; mitophagy ; Neurodegenerative diseases ; Pathogenesis ; Pathophysiology ; Phagocytosis ; Phosphatase ; reactive oxygen species ; Retrograde transport</subject><ispartof>Antioxidants, 2021-06, Vol.10 (6), p.938</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3</citedby><cites>FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544570792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544570792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Drabik, Karolina</creatorcontrib><creatorcontrib>Malińska, Dominika</creatorcontrib><creatorcontrib>Piecyk, Karolina</creatorcontrib><creatorcontrib>Dębska-Vielhaber, Grażyna</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Duszyński, Jerzy</creatorcontrib><creatorcontrib>Szczepanowska, Joanna</creatorcontrib><title>Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover</title><title>Antioxidants</title><description>Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.</description><subject>Adaptation</subject><subject>Alzheimer's disease</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Antioxidants</subject><subject>Autophagy</subject><subject>Biosynthesis</subject><subject>Cellular stress response</subject><subject>Experiments</subject><subject>Fibroblasts</subject><subject>Homeostasis</subject><subject>Mitochondria</subject><subject>mitochondrial biogenesis</subject><subject>mitochondrial retrograde signaling</subject><subject>mitophagy</subject><subject>Neurodegenerative diseases</subject><subject>Pathogenesis</subject><subject>Pathophysiology</subject><subject>Phagocytosis</subject><subject>Phosphatase</subject><subject>reactive oxygen species</subject><subject>Retrograde transport</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1rVDEUhoMottRuXQfcuJmaj3vzsRHKtKOFioXWdcjNRyfDvcmY5I76Q_y_ZpwiTrNIQs7Dw8nLAeAtRheUSvRBxxrST4wQQ5KKF-CUIM4WVBL88r_7CTgvZYPakpgKJF-DE9oRhHqBT8Hva--dqTB5uFznFIOB9zW7UuBd212sMES4CkNOw6hLLfDK5bBzFvqcJnina2hMgT9CXUMN77cpa9scq5SnvfPyCqYIv4SazDpFm4Me4WqOpvUdoY72WelhzjHtXH4DXnk9Fnf-dJ6Bb6vrh-Xnxe3XTzfLy9uF6RiuC2419bzDgxG0Z1p6IeTQvoWN0D0nxkrrUG-87SjrJEVC-IH1qGcEM2adpmfg5uC1SW_UNodJ518q6aD-PqT8qHSuwYxOmcEbbLjAhNPmGrQYHMXYeswo94g118eDazsPk7Om5ZL1eCQ9rsSwVo9ppwQhEhHZBO-fBDl9n12pagrFuHHU0aW5KNJ3okMdl7yh756hm9Sia1Htqa7niEvSqIsDZXIqJTv_rxmM1H6A1PEA0T_sEbnt</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Drabik, Karolina</creator><creator>Malińska, Dominika</creator><creator>Piecyk, Karolina</creator><creator>Dębska-Vielhaber, Grażyna</creator><creator>Vielhaber, Stefan</creator><creator>Duszyński, Jerzy</creator><creator>Szczepanowska, Joanna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210610</creationdate><title>Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover</title><author>Drabik, Karolina ; Malińska, Dominika ; Piecyk, Karolina ; Dębska-Vielhaber, Grażyna ; Vielhaber, Stefan ; Duszyński, Jerzy ; Szczepanowska, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Alzheimer's disease</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Antioxidants</topic><topic>Autophagy</topic><topic>Biosynthesis</topic><topic>Cellular stress response</topic><topic>Experiments</topic><topic>Fibroblasts</topic><topic>Homeostasis</topic><topic>Mitochondria</topic><topic>mitochondrial biogenesis</topic><topic>mitochondrial retrograde signaling</topic><topic>mitophagy</topic><topic>Neurodegenerative diseases</topic><topic>Pathogenesis</topic><topic>Pathophysiology</topic><topic>Phagocytosis</topic><topic>Phosphatase</topic><topic>reactive oxygen species</topic><topic>Retrograde transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drabik, Karolina</creatorcontrib><creatorcontrib>Malińska, Dominika</creatorcontrib><creatorcontrib>Piecyk, Karolina</creatorcontrib><creatorcontrib>Dębska-Vielhaber, Grażyna</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Duszyński, Jerzy</creatorcontrib><creatorcontrib>Szczepanowska, Joanna</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drabik, Karolina</au><au>Malińska, Dominika</au><au>Piecyk, Karolina</au><au>Dębska-Vielhaber, Grażyna</au><au>Vielhaber, Stefan</au><au>Duszyński, Jerzy</au><au>Szczepanowska, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover</atitle><jtitle>Antioxidants</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>10</volume><issue>6</issue><spage>938</spage><pages>938-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34200581</pmid><doi>10.3390/antiox10060938</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2021-06, Vol.10 (6), p.938
issn 2076-3921
2076-3921
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cbfc1c781273493ba8be311df1637f06
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adaptation
Alzheimer's disease
Antibiotics
Antibodies
Antioxidants
Autophagy
Biosynthesis
Cellular stress response
Experiments
Fibroblasts
Homeostasis
Mitochondria
mitochondrial biogenesis
mitochondrial retrograde signaling
mitophagy
Neurodegenerative diseases
Pathogenesis
Pathophysiology
Phagocytosis
Phosphatase
reactive oxygen species
Retrograde transport
title Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Chronic%20Stress%20Present%20in%20Fibroblasts%20Derived%20from%20Patients%20with%20a%20Sporadic%20Form%20of%20AD%20on%20Mitochondrial%20Function%20and%20Mitochondrial%20Turnover&rft.jtitle=Antioxidants&rft.au=Drabik,%20Karolina&rft.date=2021-06-10&rft.volume=10&rft.issue=6&rft.spage=938&rft.pages=938-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox10060938&rft_dat=%3Cproquest_doaj_%3E2548404797%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-7da3f741bc8356a9f889b5811c8a572cd9de05cfd436493088fb650562166dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544570792&rft_id=info:pmid/34200581&rfr_iscdi=true