Loading…

Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree

Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses eva...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.80348-80391
Main Authors: Azam, Zahedi, Islam, Md. Motaharul, Huda, Mohammad Nurul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63
cites cdi_FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63
container_end_page 80391
container_issue
container_start_page 80348
container_title IEEE access
container_volume 11
creator Azam, Zahedi
Islam, Md. Motaharul
Huda, Mohammad Nurul
description Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses evasion techniques employed by attackers and the challenges in combating them to enhance network security. Researchers strive to improve IDS by accurately detecting intruders, reducing false positives, and identifying new threats. Machine learning (ML) and deep learning (DL) techniques are adopted in IDS systems, showing potential in efficiently detecting intruders across networks. The paper explores the latest trends and advancements in ML and DL-based network intrusion detection systems (NIDS), including methodology, evaluation metrics, and dataset selection. It emphasizes research obstacles and proposes a future research model to address weaknesses in the methodologies. The decision tree, known for its speed and user-friendliness, is proposed as a model for detecting result anomalies, combining findings from a comparative survey. This research aims to provide insights into building an effective decision tree-based detection framework.
doi_str_mv 10.1109/ACCESS.2023.3296444
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc08d8da1f2b4f34a5476d90784b096b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10185955</ieee_id><doaj_id>oai_doaj_org_article_cc08d8da1f2b4f34a5476d90784b096b</doaj_id><sourcerecordid>2845755981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUNRPoIcFz1uTbJJNjnX9V6h4aD2HbDLbprSbmmyFfntTt6hzmeEx7zcML8tuMBphjOT9uK6fZrMRQaQclURySulJdkEwl0XJSn76bz7PrmNcoVQiSay6yGLtN1sddO--IB93er2PLua-zSddH3bR-S5_hB5Mf5hm-9jDJua6s_mbNkvXQT4FHTrXLYoHHSHJ3sL6DzRfBr9bLBPDuB_YPABcZWetXke4PvbL7OP5aV6_FtP3l0k9nhaGMtkXQliMmTSMUlsR0hCDhJFAACFpiaayEbhiFbfEcI6s1Fhgylti2sZWBnh5mU0GrvV6pbbBbXTYK6-d-hF8WCgdemfWoExiW2E1bklD25JqRhNYokrQBkneJNbdwNoG_7mD2KuV34X0ZlREUFYxJgVOW-WwZYKPMUD7exUjdQhLDWGpQ1jqGFZy3Q4uBwD_HFgwyVj5DbEikKI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845755981</pqid></control><display><type>article</type><title>Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree</title><source>IEEE Xplore Open Access Journals</source><creator>Azam, Zahedi ; Islam, Md. Motaharul ; Huda, Mohammad Nurul</creator><creatorcontrib>Azam, Zahedi ; Islam, Md. Motaharul ; Huda, Mohammad Nurul</creatorcontrib><description>Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses evasion techniques employed by attackers and the challenges in combating them to enhance network security. Researchers strive to improve IDS by accurately detecting intruders, reducing false positives, and identifying new threats. Machine learning (ML) and deep learning (DL) techniques are adopted in IDS systems, showing potential in efficiently detecting intruders across networks. The paper explores the latest trends and advancements in ML and DL-based network intrusion detection systems (NIDS), including methodology, evaluation metrics, and dataset selection. It emphasizes research obstacles and proposes a future research model to address weaknesses in the methodologies. The decision tree, known for its speed and user-friendliness, is proposed as a model for detecting result anomalies, combining findings from a comparative survey. This research aims to provide insights into building an effective decision tree-based detection framework.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3296444</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Computer crime ; Computer hacking ; Cybersecurity ; Datasets ; DDoS attacks ; Decision analysis ; decision tree ; Decision trees ; Deep learning ; inductive learning ; Intrusion ; Intrusion detection ; Intrusion detection system ; Intrusion detection systems ; Machine learning ; Phishing ; supervised and unsupervised learning ; Surveys ; Taxonomy ; Unsupervised learning</subject><ispartof>IEEE access, 2023, Vol.11, p.80348-80391</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63</citedby><cites>FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63</cites><orcidid>0000-0002-8030-3225 ; 0009-0000-7617-8030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10185955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Azam, Zahedi</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><creatorcontrib>Huda, Mohammad Nurul</creatorcontrib><title>Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses evasion techniques employed by attackers and the challenges in combating them to enhance network security. Researchers strive to improve IDS by accurately detecting intruders, reducing false positives, and identifying new threats. Machine learning (ML) and deep learning (DL) techniques are adopted in IDS systems, showing potential in efficiently detecting intruders across networks. The paper explores the latest trends and advancements in ML and DL-based network intrusion detection systems (NIDS), including methodology, evaluation metrics, and dataset selection. It emphasizes research obstacles and proposes a future research model to address weaknesses in the methodologies. The decision tree, known for its speed and user-friendliness, is proposed as a model for detecting result anomalies, combining findings from a comparative survey. This research aims to provide insights into building an effective decision tree-based detection framework.</description><subject>Anomalies</subject><subject>Computer crime</subject><subject>Computer hacking</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>DDoS attacks</subject><subject>Decision analysis</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>inductive learning</subject><subject>Intrusion</subject><subject>Intrusion detection</subject><subject>Intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Phishing</subject><subject>supervised and unsupervised learning</subject><subject>Surveys</subject><subject>Taxonomy</subject><subject>Unsupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRUNRPoIcFz1uTbJJNjnX9V6h4aD2HbDLbprSbmmyFfntTt6hzmeEx7zcML8tuMBphjOT9uK6fZrMRQaQclURySulJdkEwl0XJSn76bz7PrmNcoVQiSay6yGLtN1sddO--IB93er2PLua-zSddH3bR-S5_hB5Mf5hm-9jDJua6s_mbNkvXQT4FHTrXLYoHHSHJ3sL6DzRfBr9bLBPDuB_YPABcZWetXke4PvbL7OP5aV6_FtP3l0k9nhaGMtkXQliMmTSMUlsR0hCDhJFAACFpiaayEbhiFbfEcI6s1Fhgylti2sZWBnh5mU0GrvV6pbbBbXTYK6-d-hF8WCgdemfWoExiW2E1bklD25JqRhNYokrQBkneJNbdwNoG_7mD2KuV34X0ZlREUFYxJgVOW-WwZYKPMUD7exUjdQhLDWGpQ1jqGFZy3Q4uBwD_HFgwyVj5DbEikKI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Azam, Zahedi</creator><creator>Islam, Md. Motaharul</creator><creator>Huda, Mohammad Nurul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0009-0000-7617-8030</orcidid></search><sort><creationdate>2023</creationdate><title>Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree</title><author>Azam, Zahedi ; Islam, Md. Motaharul ; Huda, Mohammad Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Computer crime</topic><topic>Computer hacking</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>DDoS attacks</topic><topic>Decision analysis</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>inductive learning</topic><topic>Intrusion</topic><topic>Intrusion detection</topic><topic>Intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Phishing</topic><topic>supervised and unsupervised learning</topic><topic>Surveys</topic><topic>Taxonomy</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azam, Zahedi</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><creatorcontrib>Huda, Mohammad Nurul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azam, Zahedi</au><au>Islam, Md. Motaharul</au><au>Huda, Mohammad Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>80348</spage><epage>80391</epage><pages>80348-80391</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses evasion techniques employed by attackers and the challenges in combating them to enhance network security. Researchers strive to improve IDS by accurately detecting intruders, reducing false positives, and identifying new threats. Machine learning (ML) and deep learning (DL) techniques are adopted in IDS systems, showing potential in efficiently detecting intruders across networks. The paper explores the latest trends and advancements in ML and DL-based network intrusion detection systems (NIDS), including methodology, evaluation metrics, and dataset selection. It emphasizes research obstacles and proposes a future research model to address weaknesses in the methodologies. The decision tree, known for its speed and user-friendliness, is proposed as a model for detecting result anomalies, combining findings from a comparative survey. This research aims to provide insights into building an effective decision tree-based detection framework.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3296444</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0009-0000-7617-8030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.80348-80391
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc08d8da1f2b4f34a5476d90784b096b
source IEEE Xplore Open Access Journals
subjects Anomalies
Computer crime
Computer hacking
Cybersecurity
Datasets
DDoS attacks
Decision analysis
decision tree
Decision trees
Deep learning
inductive learning
Intrusion
Intrusion detection
Intrusion detection system
Intrusion detection systems
Machine learning
Phishing
supervised and unsupervised learning
Surveys
Taxonomy
Unsupervised learning
title Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Intrusion%20Detection%20Systems%20and%20Machine%20Learning-Based%20Model%20Analysis%20Through%20Decision%20Tree&rft.jtitle=IEEE%20access&rft.au=Azam,%20Zahedi&rft.date=2023&rft.volume=11&rft.spage=80348&rft.epage=80391&rft.pages=80348-80391&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3296444&rft_dat=%3Cproquest_doaj_%3E2845755981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-88d1159c544d722b2c08c9e2e009d2a49b817576d2c660d9a18146f2cfbd7ce63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845755981&rft_id=info:pmid/&rft_ieee_id=10185955&rfr_iscdi=true