Loading…
ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES
Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3 |
---|---|
cites | |
container_end_page | 19 |
container_issue | |
container_start_page | 13 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLVIII-4/W3-2022 |
creator | Alcaras, E. Amoroso, P. P. Figliomeni, F. G. Parente, C. Prezioso, G. |
description | Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods. |
doi_str_mv | 10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3</doaj_id><sourcerecordid>2745082552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</originalsourceid><addsrcrecordid>eNpNkd1O3DAQhSNUJBDwDpZ67eJ_kt5ZwbtYyiZVkgV6ZTmx02ZFydYGpL59sxtaobk4o5mjMyN9SXKN0ReOM3Y9xn2I0Ib-5_jmI3ws7rXWkMEHCgkiBOJFT5JzMtthhij79KE_S65i3CGEMBOCI36ePMs839Yy_w7UvSy2stVVCaoVyCvZtIUuFVCP7bw_zjeqvatuG6BLUKtN1SrQqLLR5forkKDZyLoF3-oqV7fbWoFVVR_W7ZxRQAL0Rq5Vc5mcDvYp-qt3vUi2K9Xmd7Co1jqXBeypoAR2qc8GTCnPqHfEio4jyz2ig78RA3FDZnvOKMO4cxkWnlnmRDfbLEstmYteJHrJdZPdmX0Yf9nwx0x2NMfBFH4YG17G_smbvifYM-cISgVztks57RztOmedTYWjc9bnJWsfpt-vPr6Y3fQanuf3DblhHKWEczK71ourD1OMwQ__r2JkDuzMkZ35x84s7AwzD9QcmBm8KP0LLpqLog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745082552</pqid></control><display><type>article</type><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><source>Publicly Available Content Database</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</creator><creatorcontrib>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</creatorcontrib><description>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Accuracy ; Algorithms ; Coasts ; Digital Elevation Models ; Lidar ; Normalized difference vegetative index ; Photointerpretation ; Procedures ; Remote sensing ; Satellite imagery ; Satellites ; Vegetation</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2745082552?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Alcaras, E.</creatorcontrib><creatorcontrib>Amoroso, P. P.</creatorcontrib><creatorcontrib>Figliomeni, F. G.</creatorcontrib><creatorcontrib>Parente, C.</creatorcontrib><creatorcontrib>Prezioso, G.</creatorcontrib><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coasts</subject><subject>Digital Elevation Models</subject><subject>Lidar</subject><subject>Normalized difference vegetative index</subject><subject>Photointerpretation</subject><subject>Procedures</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Vegetation</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1O3DAQhSNUJBDwDpZ67eJ_kt5ZwbtYyiZVkgV6ZTmx02ZFydYGpL59sxtaobk4o5mjMyN9SXKN0ReOM3Y9xn2I0Ib-5_jmI3ws7rXWkMEHCgkiBOJFT5JzMtthhij79KE_S65i3CGEMBOCI36ePMs839Yy_w7UvSy2stVVCaoVyCvZtIUuFVCP7bw_zjeqvatuG6BLUKtN1SrQqLLR5forkKDZyLoF3-oqV7fbWoFVVR_W7ZxRQAL0Rq5Vc5mcDvYp-qt3vUi2K9Xmd7Co1jqXBeypoAR2qc8GTCnPqHfEio4jyz2ig78RA3FDZnvOKMO4cxkWnlnmRDfbLEstmYteJHrJdZPdmX0Yf9nwx0x2NMfBFH4YG17G_smbvifYM-cISgVztks57RztOmedTYWjc9bnJWsfpt-vPr6Y3fQanuf3DblhHKWEczK71ourD1OMwQ__r2JkDuzMkZ35x84s7AwzD9QcmBm8KP0LLpqLog</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Alcaras, E.</creator><creator>Amoroso, P. P.</creator><creator>Figliomeni, F. G.</creator><creator>Parente, C.</creator><creator>Prezioso, G.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20221202</creationdate><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><author>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coasts</topic><topic>Digital Elevation Models</topic><topic>Lidar</topic><topic>Normalized difference vegetative index</topic><topic>Photointerpretation</topic><topic>Procedures</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcaras, E.</creatorcontrib><creatorcontrib>Amoroso, P. P.</creatorcontrib><creatorcontrib>Figliomeni, F. G.</creatorcontrib><creatorcontrib>Parente, C.</creatorcontrib><creatorcontrib>Prezioso, G.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcaras, E.</au><au>Amoroso, P. P.</au><au>Figliomeni, F. G.</au><au>Parente, C.</au><au>Prezioso, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2022-12-02</date><risdate>2022</risdate><volume>XLVIII-4/W3-2022</volume><spage>13</spage><epage>19</epage><pages>13-19</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3 |
source | Publicly Available Content Database; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Coasts Digital Elevation Models Lidar Normalized difference vegetative index Photointerpretation Procedures Remote sensing Satellite imagery Satellites Vegetation |
title | ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCURACY%20EVALUATION%20OF%20COASTLINE%20EXTRACTION%20METHODS%20IN%20REMOTE%20SENSING:%20A%20SMART%20PROCEDURE%20FOR%20SENTINEL-2%20IMAGES&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Alcaras,%20E.&rft.date=2022-12-02&rft.volume=XLVIII-4/W3-2022&rft.spage=13&rft.epage=19&rft.pages=13-19&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022&rft_dat=%3Cproquest_doaj_%3E2745082552%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745082552&rft_id=info:pmid/&rfr_iscdi=true |