Loading…

ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES

Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19
Main Authors: Alcaras, E., Amoroso, P. P., Figliomeni, F. G., Parente, C., Prezioso, G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3
cites
container_end_page 19
container_issue
container_start_page 13
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XLVIII-4/W3-2022
creator Alcaras, E.
Amoroso, P. P.
Figliomeni, F. G.
Parente, C.
Prezioso, G.
description Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.
doi_str_mv 10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3</doaj_id><sourcerecordid>2745082552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</originalsourceid><addsrcrecordid>eNpNkd1O3DAQhSNUJBDwDpZ67eJ_kt5ZwbtYyiZVkgV6ZTmx02ZFydYGpL59sxtaobk4o5mjMyN9SXKN0ReOM3Y9xn2I0Ib-5_jmI3ws7rXWkMEHCgkiBOJFT5JzMtthhij79KE_S65i3CGEMBOCI36ePMs839Yy_w7UvSy2stVVCaoVyCvZtIUuFVCP7bw_zjeqvatuG6BLUKtN1SrQqLLR5forkKDZyLoF3-oqV7fbWoFVVR_W7ZxRQAL0Rq5Vc5mcDvYp-qt3vUi2K9Xmd7Co1jqXBeypoAR2qc8GTCnPqHfEio4jyz2ig78RA3FDZnvOKMO4cxkWnlnmRDfbLEstmYteJHrJdZPdmX0Yf9nwx0x2NMfBFH4YG17G_smbvifYM-cISgVztks57RztOmedTYWjc9bnJWsfpt-vPr6Y3fQanuf3DblhHKWEczK71ourD1OMwQ__r2JkDuzMkZ35x84s7AwzD9QcmBm8KP0LLpqLog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745082552</pqid></control><display><type>article</type><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><source>Publicly Available Content Database</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</creator><creatorcontrib>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</creatorcontrib><description>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Accuracy ; Algorithms ; Coasts ; Digital Elevation Models ; Lidar ; Normalized difference vegetative index ; Photointerpretation ; Procedures ; Remote sensing ; Satellite imagery ; Satellites ; Vegetation</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2745082552?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Alcaras, E.</creatorcontrib><creatorcontrib>Amoroso, P. P.</creatorcontrib><creatorcontrib>Figliomeni, F. G.</creatorcontrib><creatorcontrib>Parente, C.</creatorcontrib><creatorcontrib>Prezioso, G.</creatorcontrib><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coasts</subject><subject>Digital Elevation Models</subject><subject>Lidar</subject><subject>Normalized difference vegetative index</subject><subject>Photointerpretation</subject><subject>Procedures</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Vegetation</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1O3DAQhSNUJBDwDpZ67eJ_kt5ZwbtYyiZVkgV6ZTmx02ZFydYGpL59sxtaobk4o5mjMyN9SXKN0ReOM3Y9xn2I0Ib-5_jmI3ws7rXWkMEHCgkiBOJFT5JzMtthhij79KE_S65i3CGEMBOCI36ePMs839Yy_w7UvSy2stVVCaoVyCvZtIUuFVCP7bw_zjeqvatuG6BLUKtN1SrQqLLR5forkKDZyLoF3-oqV7fbWoFVVR_W7ZxRQAL0Rq5Vc5mcDvYp-qt3vUi2K9Xmd7Co1jqXBeypoAR2qc8GTCnPqHfEio4jyz2ig78RA3FDZnvOKMO4cxkWnlnmRDfbLEstmYteJHrJdZPdmX0Yf9nwx0x2NMfBFH4YG17G_smbvifYM-cISgVztks57RztOmedTYWjc9bnJWsfpt-vPr6Y3fQanuf3DblhHKWEczK71ourD1OMwQ__r2JkDuzMkZ35x84s7AwzD9QcmBm8KP0LLpqLog</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Alcaras, E.</creator><creator>Amoroso, P. P.</creator><creator>Figliomeni, F. G.</creator><creator>Parente, C.</creator><creator>Prezioso, G.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20221202</creationdate><title>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</title><author>Alcaras, E. ; Amoroso, P. P. ; Figliomeni, F. G. ; Parente, C. ; Prezioso, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coasts</topic><topic>Digital Elevation Models</topic><topic>Lidar</topic><topic>Normalized difference vegetative index</topic><topic>Photointerpretation</topic><topic>Procedures</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcaras, E.</creatorcontrib><creatorcontrib>Amoroso, P. P.</creatorcontrib><creatorcontrib>Figliomeni, F. G.</creatorcontrib><creatorcontrib>Parente, C.</creatorcontrib><creatorcontrib>Prezioso, G.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcaras, E.</au><au>Amoroso, P. P.</au><au>Figliomeni, F. G.</au><au>Parente, C.</au><au>Prezioso, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2022-12-02</date><risdate>2022</risdate><volume>XLVIII-4/W3-2022</volume><spage>13</spage><epage>19</epage><pages>13-19</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM is useful as reference to compare various methods.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2022-12, Vol.XLVIII-4/W3-2022, p.13-19
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc21e4dd20864dab853bd3bbdada86d3
source Publicly Available Content Database; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Coasts
Digital Elevation Models
Lidar
Normalized difference vegetative index
Photointerpretation
Procedures
Remote sensing
Satellite imagery
Satellites
Vegetation
title ACCURACY EVALUATION OF COASTLINE EXTRACTION METHODS IN REMOTE SENSING: A SMART PROCEDURE FOR SENTINEL-2 IMAGES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCURACY%20EVALUATION%20OF%20COASTLINE%20EXTRACTION%20METHODS%20IN%20REMOTE%20SENSING:%20A%20SMART%20PROCEDURE%20FOR%20SENTINEL-2%20IMAGES&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Alcaras,%20E.&rft.date=2022-12-02&rft.volume=XLVIII-4/W3-2022&rft.spage=13&rft.epage=19&rft.pages=13-19&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-4-W3-2022-13-2022&rft_dat=%3Cproquest_doaj_%3E2745082552%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3632-b8e9f133593ed2a6b50a5e03fe76f2df9ac543411bd916e4a4d6ba6ba48a2a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745082552&rft_id=info:pmid/&rfr_iscdi=true