Loading…
Ceftazidime/Tobramycin Co-Loaded Chitosan-Coated Zein Nanoparticles against Antibiotic-Resistant and Biofilm-Producing Pseudomonas aeruginosa and Klebsiella pneumoniae
This study aimed to co-encapsulate ceftazidime and tobramycin in zein nanoparticles coated with chitosan and to characterize and evaluate the antibacterial and antibiofilm activity against antibiotic-resistant and . Zein nanoparticles, synthesized using the nanoprecipitation method, were characteriz...
Saved in:
Published in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2024-02, Vol.17 (3), p.320 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to co-encapsulate ceftazidime and tobramycin in zein nanoparticles coated with chitosan and to characterize and evaluate the antibacterial and antibiofilm activity against antibiotic-resistant
and
. Zein nanoparticles, synthesized using the nanoprecipitation method, were characterized by their particle size (Ø), polydispersity index (PDI), zeta potential (ζ), pH, and encapsulation efficiency (%EE). The chitosan coating provided stability, and physicochemical analyses revealed chemical interactions, efficient drug encapsulation, and thermal stability. The release kinetics demonstrated controlled release in simulated gastric and intestinal pH. The antibacterial activity, assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), indicated effectiveness against both pathogens. Antibiofilm assays, conducted using the crystal violet method, demonstrated the inhibition and eradication of biofilms. The chitosan-coated zein nanoparticles with CAZ and/or TOB exhibited Ø (315-335 nm), PDI (55%). Notably, the co-encapsulation formulation (CAZ-TOB-ZNP-CH) showed enhanced antibacterial and antibiofilm activities compared to the individual formulations. These findings suggest that the developed nanoparticles present a promising alternative for treating respiratory and intestinal infections caused by antibiotic-resistant and biofilm-producing
and
. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph17030320 |