Loading…

Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses

mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The m...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-07, Vol.10 (1), p.3178-13, Article 3178
Main Authors: Bauer, Karl E., Segura, Inmaculada, Gaspar, Imre, Scheuss, Volker, Illig, Christin, Ammer, Georg, Hutten, Saskia, Basyuk, Eugénia, Fernández-Moya, Sandra M., Ehses, Janina, Bertrand, Edouard, Kiebler, Michael A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3
cites cdi_FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3
container_end_page 13
container_issue 1
container_start_page 3178
container_title Nature communications
container_volume 10
creator Bauer, Karl E.
Segura, Inmaculada
Gaspar, Imre
Scheuss, Volker
Illig, Christin
Ammer, Georg
Hutten, Saskia
Basyuk, Eugénia
Fernández-Moya, Sandra M.
Ehses, Janina
Bertrand, Edouard
Kiebler, Michael A.
description mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3′-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3′-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3′-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3′-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner. Asymmetric subcellular mRNA distribution is important for local translation of neuronal mRNAs. Here the authors employed MS2 live-cell imaging and showed that the reporter mRNA containing the 3’ UTR of Rgs4 shows an anterograde transport bias, dependent on neuronal activity and the protein Staufen2, and mediates sustained mRNA recruitment to synapses.
doi_str_mv 10.1038/s41467-019-11123-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc4d41928ef64ea9ba34f9e96c74913b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc4d41928ef64ea9ba34f9e96c74913b</doaj_id><sourcerecordid>2261221590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3</originalsourceid><addsrcrecordid>eNp9ksFO3DAQhqOqqCDgBXqoIvVSDmk99sSJL5VWiBakVSshOFuOMwlZZeOtnV3Brc_UR-qT1CGUAof6Ymvmm39mrD9J3gL7CEyUnwICyiJjoDIA4CK7fZUccIaQQcHF6yfv_eQ4hBWLRygoEd8k-wIEZxLxIDlbdjtKLfV92q1N2w1t6mlHpg-p-P3zV3Z9dZnWtKGhpmFM15ffFmlwfpy40aXhbjCbQOEo2WtiCR0_3IfJ9Zezq9PzbPn968XpYplZiWzMiDeKLGHDqSwbVjU5oZEVr-oKoKw5h6YuqpgzRslG1aUkhnluFBZCyNKIw-Ri1q2dWemNjyP7O-1Mp-8DzrfaxOFsT9parBEUL6mRSEZVRmDsrqQtUIGootbnWWuzrdZU27ifN_0z0eeZobvRrdtpKYUSSkaBk1ng5kXZ-WKppxjjAkXO1A4i--GhmXc_thRGve7C9OtmILcNmnMJcf1csYi-f4Gu3NYP8VsnikGe54iR4jNlvQvBU_M4ATA9GUTPBtHRIPreIPo2Fr17uvJjyV87REDMQIipoSX_r_d_ZP8Ai0LGDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260155544</pqid></control><display><type>article</type><title>Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bauer, Karl E. ; Segura, Inmaculada ; Gaspar, Imre ; Scheuss, Volker ; Illig, Christin ; Ammer, Georg ; Hutten, Saskia ; Basyuk, Eugénia ; Fernández-Moya, Sandra M. ; Ehses, Janina ; Bertrand, Edouard ; Kiebler, Michael A.</creator><creatorcontrib>Bauer, Karl E. ; Segura, Inmaculada ; Gaspar, Imre ; Scheuss, Volker ; Illig, Christin ; Ammer, Georg ; Hutten, Saskia ; Basyuk, Eugénia ; Fernández-Moya, Sandra M. ; Ehses, Janina ; Bertrand, Edouard ; Kiebler, Michael A.</creatorcontrib><description>mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3′-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3′-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3′-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3′-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner. Asymmetric subcellular mRNA distribution is important for local translation of neuronal mRNAs. Here the authors employed MS2 live-cell imaging and showed that the reporter mRNA containing the 3’ UTR of Rgs4 shows an anterograde transport bias, dependent on neuronal activity and the protein Staufen2, and mediates sustained mRNA recruitment to synapses.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-11123-x</identifier><identifier>PMID: 31320644</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 14 ; 14/63 ; 3' Untranslated regions ; 3' Untranslated Regions - genetics ; 631/1647/245/2225 ; 631/337/1645/2052 ; 631/378/2591 ; 631/57/343/2281 ; 631/80/85 ; 64/86 ; 96/106 ; Animals ; Anterograde transport ; Bias ; Cell Line ; Chemical activity ; Dendrites ; Dendrites - genetics ; HEK293 Cells ; Hippocampus - metabolism ; Humanities and Social Sciences ; Humans ; Life Sciences ; mRNA ; multidisciplinary ; Neuromodulation ; Organic chemistry ; Rats ; Rats, Sprague-Dawley ; Recruitment ; RGS Proteins - genetics ; RNA transport ; RNA Transport - physiology ; RNA, Messenger - genetics ; RNA-Binding Proteins - genetics ; Science ; Science (multidisciplinary) ; Synapses ; Synapses - metabolism ; Temporal resolution ; Translation ; Transport</subject><ispartof>Nature communications, 2019-07, Vol.10 (1), p.3178-13, Article 3178</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3</citedby><cites>FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3</cites><orcidid>0000-0003-1849-5569 ; 0000-0002-8850-6297 ; 0000-0003-0634-769X ; 0000-0002-6527-637X ; 0000-0002-5894-4296 ; 0000-0002-0659-3228 ; 0000-0002-9642-7994 ; 0000-0001-9768-4557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2260155544/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2260155544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31320644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02343509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Karl E.</creatorcontrib><creatorcontrib>Segura, Inmaculada</creatorcontrib><creatorcontrib>Gaspar, Imre</creatorcontrib><creatorcontrib>Scheuss, Volker</creatorcontrib><creatorcontrib>Illig, Christin</creatorcontrib><creatorcontrib>Ammer, Georg</creatorcontrib><creatorcontrib>Hutten, Saskia</creatorcontrib><creatorcontrib>Basyuk, Eugénia</creatorcontrib><creatorcontrib>Fernández-Moya, Sandra M.</creatorcontrib><creatorcontrib>Ehses, Janina</creatorcontrib><creatorcontrib>Bertrand, Edouard</creatorcontrib><creatorcontrib>Kiebler, Michael A.</creatorcontrib><title>Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3′-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3′-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3′-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3′-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner. Asymmetric subcellular mRNA distribution is important for local translation of neuronal mRNAs. Here the authors employed MS2 live-cell imaging and showed that the reporter mRNA containing the 3’ UTR of Rgs4 shows an anterograde transport bias, dependent on neuronal activity and the protein Staufen2, and mediates sustained mRNA recruitment to synapses.</description><subject>13</subject><subject>13/109</subject><subject>14</subject><subject>14/63</subject><subject>3' Untranslated regions</subject><subject>3' Untranslated Regions - genetics</subject><subject>631/1647/245/2225</subject><subject>631/337/1645/2052</subject><subject>631/378/2591</subject><subject>631/57/343/2281</subject><subject>631/80/85</subject><subject>64/86</subject><subject>96/106</subject><subject>Animals</subject><subject>Anterograde transport</subject><subject>Bias</subject><subject>Cell Line</subject><subject>Chemical activity</subject><subject>Dendrites</subject><subject>Dendrites - genetics</subject><subject>HEK293 Cells</subject><subject>Hippocampus - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Neuromodulation</subject><subject>Organic chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recruitment</subject><subject>RGS Proteins - genetics</subject><subject>RNA transport</subject><subject>RNA Transport - physiology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Temporal resolution</subject><subject>Translation</subject><subject>Transport</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFO3DAQhqOqqCDgBXqoIvVSDmk99sSJL5VWiBakVSshOFuOMwlZZeOtnV3Brc_UR-qT1CGUAof6Ymvmm39mrD9J3gL7CEyUnwICyiJjoDIA4CK7fZUccIaQQcHF6yfv_eQ4hBWLRygoEd8k-wIEZxLxIDlbdjtKLfV92q1N2w1t6mlHpg-p-P3zV3Z9dZnWtKGhpmFM15ffFmlwfpy40aXhbjCbQOEo2WtiCR0_3IfJ9Zezq9PzbPn968XpYplZiWzMiDeKLGHDqSwbVjU5oZEVr-oKoKw5h6YuqpgzRslG1aUkhnluFBZCyNKIw-Ri1q2dWemNjyP7O-1Mp-8DzrfaxOFsT9parBEUL6mRSEZVRmDsrqQtUIGootbnWWuzrdZU27ifN_0z0eeZobvRrdtpKYUSSkaBk1ng5kXZ-WKppxjjAkXO1A4i--GhmXc_thRGve7C9OtmILcNmnMJcf1csYi-f4Gu3NYP8VsnikGe54iR4jNlvQvBU_M4ATA9GUTPBtHRIPreIPo2Fr17uvJjyV87REDMQIipoSX_r_d_ZP8Ai0LGDg</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Bauer, Karl E.</creator><creator>Segura, Inmaculada</creator><creator>Gaspar, Imre</creator><creator>Scheuss, Volker</creator><creator>Illig, Christin</creator><creator>Ammer, Georg</creator><creator>Hutten, Saskia</creator><creator>Basyuk, Eugénia</creator><creator>Fernández-Moya, Sandra M.</creator><creator>Ehses, Janina</creator><creator>Bertrand, Edouard</creator><creator>Kiebler, Michael A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1849-5569</orcidid><orcidid>https://orcid.org/0000-0002-8850-6297</orcidid><orcidid>https://orcid.org/0000-0003-0634-769X</orcidid><orcidid>https://orcid.org/0000-0002-6527-637X</orcidid><orcidid>https://orcid.org/0000-0002-5894-4296</orcidid><orcidid>https://orcid.org/0000-0002-0659-3228</orcidid><orcidid>https://orcid.org/0000-0002-9642-7994</orcidid><orcidid>https://orcid.org/0000-0001-9768-4557</orcidid></search><sort><creationdate>20190718</creationdate><title>Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses</title><author>Bauer, Karl E. ; Segura, Inmaculada ; Gaspar, Imre ; Scheuss, Volker ; Illig, Christin ; Ammer, Georg ; Hutten, Saskia ; Basyuk, Eugénia ; Fernández-Moya, Sandra M. ; Ehses, Janina ; Bertrand, Edouard ; Kiebler, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/109</topic><topic>14</topic><topic>14/63</topic><topic>3' Untranslated regions</topic><topic>3' Untranslated Regions - genetics</topic><topic>631/1647/245/2225</topic><topic>631/337/1645/2052</topic><topic>631/378/2591</topic><topic>631/57/343/2281</topic><topic>631/80/85</topic><topic>64/86</topic><topic>96/106</topic><topic>Animals</topic><topic>Anterograde transport</topic><topic>Bias</topic><topic>Cell Line</topic><topic>Chemical activity</topic><topic>Dendrites</topic><topic>Dendrites - genetics</topic><topic>HEK293 Cells</topic><topic>Hippocampus - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Neuromodulation</topic><topic>Organic chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recruitment</topic><topic>RGS Proteins - genetics</topic><topic>RNA transport</topic><topic>RNA Transport - physiology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Temporal resolution</topic><topic>Translation</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Karl E.</creatorcontrib><creatorcontrib>Segura, Inmaculada</creatorcontrib><creatorcontrib>Gaspar, Imre</creatorcontrib><creatorcontrib>Scheuss, Volker</creatorcontrib><creatorcontrib>Illig, Christin</creatorcontrib><creatorcontrib>Ammer, Georg</creatorcontrib><creatorcontrib>Hutten, Saskia</creatorcontrib><creatorcontrib>Basyuk, Eugénia</creatorcontrib><creatorcontrib>Fernández-Moya, Sandra M.</creatorcontrib><creatorcontrib>Ehses, Janina</creatorcontrib><creatorcontrib>Bertrand, Edouard</creatorcontrib><creatorcontrib>Kiebler, Michael A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Karl E.</au><au>Segura, Inmaculada</au><au>Gaspar, Imre</au><au>Scheuss, Volker</au><au>Illig, Christin</au><au>Ammer, Georg</au><au>Hutten, Saskia</au><au>Basyuk, Eugénia</au><au>Fernández-Moya, Sandra M.</au><au>Ehses, Janina</au><au>Bertrand, Edouard</au><au>Kiebler, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>3178</spage><epage>13</epage><pages>3178-13</pages><artnum>3178</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3′-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3′-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3′-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3′-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner. Asymmetric subcellular mRNA distribution is important for local translation of neuronal mRNAs. Here the authors employed MS2 live-cell imaging and showed that the reporter mRNA containing the 3’ UTR of Rgs4 shows an anterograde transport bias, dependent on neuronal activity and the protein Staufen2, and mediates sustained mRNA recruitment to synapses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31320644</pmid><doi>10.1038/s41467-019-11123-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1849-5569</orcidid><orcidid>https://orcid.org/0000-0002-8850-6297</orcidid><orcidid>https://orcid.org/0000-0003-0634-769X</orcidid><orcidid>https://orcid.org/0000-0002-6527-637X</orcidid><orcidid>https://orcid.org/0000-0002-5894-4296</orcidid><orcidid>https://orcid.org/0000-0002-0659-3228</orcidid><orcidid>https://orcid.org/0000-0002-9642-7994</orcidid><orcidid>https://orcid.org/0000-0001-9768-4557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-07, Vol.10 (1), p.3178-13, Article 3178
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc4d41928ef64ea9ba34f9e96c74913b
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/109
14
14/63
3' Untranslated regions
3' Untranslated Regions - genetics
631/1647/245/2225
631/337/1645/2052
631/378/2591
631/57/343/2281
631/80/85
64/86
96/106
Animals
Anterograde transport
Bias
Cell Line
Chemical activity
Dendrites
Dendrites - genetics
HEK293 Cells
Hippocampus - metabolism
Humanities and Social Sciences
Humans
Life Sciences
mRNA
multidisciplinary
Neuromodulation
Organic chemistry
Rats
Rats, Sprague-Dawley
Recruitment
RGS Proteins - genetics
RNA transport
RNA Transport - physiology
RNA, Messenger - genetics
RNA-Binding Proteins - genetics
Science
Science (multidisciplinary)
Synapses
Synapses - metabolism
Temporal resolution
Translation
Transport
title Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live%20cell%20imaging%20reveals%203%E2%80%B2-UTR%20dependent%20mRNA%20sorting%20to%20synapses&rft.jtitle=Nature%20communications&rft.au=Bauer,%20Karl%20E.&rft.date=2019-07-18&rft.volume=10&rft.issue=1&rft.spage=3178&rft.epage=13&rft.pages=3178-13&rft.artnum=3178&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-11123-x&rft_dat=%3Cproquest_doaj_%3E2261221590%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c640t-e2f9ece4f2e88f0bf5e4a6b2bdb118d221fd7be88aa96f9d86e0455a9473368a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260155544&rft_id=info:pmid/31320644&rfr_iscdi=true