Loading…
GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough
Spatial predictive mapping using geographic information system (GIS) is considered an invaluable tool for reconnaissance-scale exploration of mineral resources. In this study, geospatial data on geophysics, remote sensing, and structural and lithological attributes were systematically integrated to...
Saved in:
Published in: | Scientific reports 2024-06, Vol.14 (1), p.14031-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-d379t-702284ea00796960239c87f6ab8c637487273fdb70619f97b5d54fab8d17c2013 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 14031 |
container_title | Scientific reports |
container_volume | 14 |
creator | Gajere, Jiriko N. Adekeye, Olabisi A. Tende, Andongma W. Aminu, Mohammed D. |
description | Spatial predictive mapping using geographic information system (GIS) is considered an invaluable tool for reconnaissance-scale exploration of mineral resources. In this study, geospatial data on geophysics, remote sensing, and structural and lithological attributes were systematically integrated to prospect barite potential zones within the Mid-Nigerian Benue Trough (MBT). Correlation attribute evaluation was used to establish the relationship between mineral deposit occurrences and geospatial data, while data integration was implemented using the Multi-Objective Optimization by Ratio Analysis (MOORA), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Additive Ratio Assessment (ARAS) multi-criteria models. Here we show that the correlation attribute evaluation suggests that barite occurrences displayed a strong correlation with spatial data on lineament density, ferric iron alteration, and potassium to thorium (K/Th) ratio, whereas a weak correlation was observed with spatial data on the first vertical derivative (FVD), proximity to the host rock, and ferrous iron alteration. Here we report that the quantitative estimation of predictive models indicated that very high predictive zones for barite occurrences accounted for 19% of all the models. The accuracy assessment using Receiver Operating Characteristic (ROC)/Area Under the Curve (AUC) showed prediction levels above 78% for all models. The effectiveness of the spatial application of multi-criteria decision models makes them a reliable tool for barite exploration within the Mid-Nigerian Benue Trough (MBT) and other geologically similar environments. |
doi_str_mv | 10.1038/s41598-024-63996-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc617909cc434ec883b4d53555e08831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc617909cc434ec883b4d53555e08831</doaj_id><sourcerecordid>3070797231</sourcerecordid><originalsourceid>FETCH-LOGICAL-d379t-702284ea00796960239c87f6ab8c637487273fdb70619f97b5d54fab8d17c2013</originalsourceid><addsrcrecordid>eNpdkstu1DAYhS0EolXpC7BAltiwCfh-WSGo2jJSVRaUFQvLsZ2pR0k82Amiu74Gr8eT4MyU0uKNL-f48-U_ALzE6C1GVL0rDHOtGkRYI6jWolFPwCFBjDeEEvL0wfgAHJeyQbVxohnWz8EBVUpXCD4E385XX5rWluDhMPdTbFyOU8jRQh9cLDGNcEg-9AV2KcPWLioMP7d9ynZa1DjCy7hedvy-_VXgxzDOAV7lNK-vX4Bnne1LOL7rj8DXs9Ork0_Nxefz1cmHi8ZTqadGIkIUCxYhqYUWiFDtlOyEbZUTVDIliaSdbyUSWHdattxz1lXVY-kIwvQIrPZcn-zGbHMcbL4xyUazW0h5bWyeouuDcU5gqZF2jlEWnFK0ZZ5TznlAdbKw3u9Z27kdgndhnLLtH0EfK2O8Nuv0w2CMlWZCVMKbO0JO3-dQJjPE4kLf2zGkuRiKZH2oJLvDXv9n3aQ5j_Wvqktoqmv5eHW9enil-7v8LWI10L2hVGmstfiHwcgsaTH7tJiaFrNLi1H0D-_mrwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069392325</pqid></control><display><type>article</type><title>GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gajere, Jiriko N. ; Adekeye, Olabisi A. ; Tende, Andongma W. ; Aminu, Mohammed D.</creator><creatorcontrib>Gajere, Jiriko N. ; Adekeye, Olabisi A. ; Tende, Andongma W. ; Aminu, Mohammed D.</creatorcontrib><description>Spatial predictive mapping using geographic information system (GIS) is considered an invaluable tool for reconnaissance-scale exploration of mineral resources. In this study, geospatial data on geophysics, remote sensing, and structural and lithological attributes were systematically integrated to prospect barite potential zones within the Mid-Nigerian Benue Trough (MBT). Correlation attribute evaluation was used to establish the relationship between mineral deposit occurrences and geospatial data, while data integration was implemented using the Multi-Objective Optimization by Ratio Analysis (MOORA), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Additive Ratio Assessment (ARAS) multi-criteria models. Here we show that the correlation attribute evaluation suggests that barite occurrences displayed a strong correlation with spatial data on lineament density, ferric iron alteration, and potassium to thorium (K/Th) ratio, whereas a weak correlation was observed with spatial data on the first vertical derivative (FVD), proximity to the host rock, and ferrous iron alteration. Here we report that the quantitative estimation of predictive models indicated that very high predictive zones for barite occurrences accounted for 19% of all the models. The accuracy assessment using Receiver Operating Characteristic (ROC)/Area Under the Curve (AUC) showed prediction levels above 78% for all models. The effectiveness of the spatial application of multi-criteria decision models makes them a reliable tool for barite exploration within the Mid-Nigerian Benue Trough (MBT) and other geologically similar environments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-63996-8</identifier><identifier>PMID: 38890381</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/213 ; 704/2151/213/4115 ; Geographic information systems ; Geophysics ; Humanities and Social Sciences ; Mineral exploration ; Mineral resources ; multidisciplinary ; Prediction models ; Remote sensing ; Science ; Science (multidisciplinary) ; Spatial data ; Thorium</subject><ispartof>Scientific reports, 2024-06, Vol.14 (1), p.14031-18</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d379t-702284ea00796960239c87f6ab8c637487273fdb70619f97b5d54fab8d17c2013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069392325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069392325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38890381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gajere, Jiriko N.</creatorcontrib><creatorcontrib>Adekeye, Olabisi A.</creatorcontrib><creatorcontrib>Tende, Andongma W.</creatorcontrib><creatorcontrib>Aminu, Mohammed D.</creatorcontrib><title>GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Spatial predictive mapping using geographic information system (GIS) is considered an invaluable tool for reconnaissance-scale exploration of mineral resources. In this study, geospatial data on geophysics, remote sensing, and structural and lithological attributes were systematically integrated to prospect barite potential zones within the Mid-Nigerian Benue Trough (MBT). Correlation attribute evaluation was used to establish the relationship between mineral deposit occurrences and geospatial data, while data integration was implemented using the Multi-Objective Optimization by Ratio Analysis (MOORA), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Additive Ratio Assessment (ARAS) multi-criteria models. Here we show that the correlation attribute evaluation suggests that barite occurrences displayed a strong correlation with spatial data on lineament density, ferric iron alteration, and potassium to thorium (K/Th) ratio, whereas a weak correlation was observed with spatial data on the first vertical derivative (FVD), proximity to the host rock, and ferrous iron alteration. Here we report that the quantitative estimation of predictive models indicated that very high predictive zones for barite occurrences accounted for 19% of all the models. The accuracy assessment using Receiver Operating Characteristic (ROC)/Area Under the Curve (AUC) showed prediction levels above 78% for all models. The effectiveness of the spatial application of multi-criteria decision models makes them a reliable tool for barite exploration within the Mid-Nigerian Benue Trough (MBT) and other geologically similar environments.</description><subject>704/2151/213</subject><subject>704/2151/213/4115</subject><subject>Geographic information systems</subject><subject>Geophysics</subject><subject>Humanities and Social Sciences</subject><subject>Mineral exploration</subject><subject>Mineral resources</subject><subject>multidisciplinary</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial data</subject><subject>Thorium</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstu1DAYhS0EolXpC7BAltiwCfh-WSGo2jJSVRaUFQvLsZ2pR0k82Amiu74Gr8eT4MyU0uKNL-f48-U_ALzE6C1GVL0rDHOtGkRYI6jWolFPwCFBjDeEEvL0wfgAHJeyQbVxohnWz8EBVUpXCD4E385XX5rWluDhMPdTbFyOU8jRQh9cLDGNcEg-9AV2KcPWLioMP7d9ynZa1DjCy7hedvy-_VXgxzDOAV7lNK-vX4Bnne1LOL7rj8DXs9Ork0_Nxefz1cmHi8ZTqadGIkIUCxYhqYUWiFDtlOyEbZUTVDIliaSdbyUSWHdattxz1lXVY-kIwvQIrPZcn-zGbHMcbL4xyUazW0h5bWyeouuDcU5gqZF2jlEWnFK0ZZ5TznlAdbKw3u9Z27kdgndhnLLtH0EfK2O8Nuv0w2CMlWZCVMKbO0JO3-dQJjPE4kLf2zGkuRiKZH2oJLvDXv9n3aQ5j_Wvqktoqmv5eHW9enil-7v8LWI10L2hVGmstfiHwcgsaTH7tJiaFrNLi1H0D-_mrwA</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Gajere, Jiriko N.</creator><creator>Adekeye, Olabisi A.</creator><creator>Tende, Andongma W.</creator><creator>Aminu, Mohammed D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240618</creationdate><title>GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough</title><author>Gajere, Jiriko N. ; Adekeye, Olabisi A. ; Tende, Andongma W. ; Aminu, Mohammed D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d379t-702284ea00796960239c87f6ab8c637487273fdb70619f97b5d54fab8d17c2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>704/2151/213</topic><topic>704/2151/213/4115</topic><topic>Geographic information systems</topic><topic>Geophysics</topic><topic>Humanities and Social Sciences</topic><topic>Mineral exploration</topic><topic>Mineral resources</topic><topic>multidisciplinary</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial data</topic><topic>Thorium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajere, Jiriko N.</creatorcontrib><creatorcontrib>Adekeye, Olabisi A.</creatorcontrib><creatorcontrib>Tende, Andongma W.</creatorcontrib><creatorcontrib>Aminu, Mohammed D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajere, Jiriko N.</au><au>Adekeye, Olabisi A.</au><au>Tende, Andongma W.</au><au>Aminu, Mohammed D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-06-18</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>14031</spage><epage>18</epage><pages>14031-18</pages><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Spatial predictive mapping using geographic information system (GIS) is considered an invaluable tool for reconnaissance-scale exploration of mineral resources. In this study, geospatial data on geophysics, remote sensing, and structural and lithological attributes were systematically integrated to prospect barite potential zones within the Mid-Nigerian Benue Trough (MBT). Correlation attribute evaluation was used to establish the relationship between mineral deposit occurrences and geospatial data, while data integration was implemented using the Multi-Objective Optimization by Ratio Analysis (MOORA), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Additive Ratio Assessment (ARAS) multi-criteria models. Here we show that the correlation attribute evaluation suggests that barite occurrences displayed a strong correlation with spatial data on lineament density, ferric iron alteration, and potassium to thorium (K/Th) ratio, whereas a weak correlation was observed with spatial data on the first vertical derivative (FVD), proximity to the host rock, and ferrous iron alteration. Here we report that the quantitative estimation of predictive models indicated that very high predictive zones for barite occurrences accounted for 19% of all the models. The accuracy assessment using Receiver Operating Characteristic (ROC)/Area Under the Curve (AUC) showed prediction levels above 78% for all models. The effectiveness of the spatial application of multi-criteria decision models makes them a reliable tool for barite exploration within the Mid-Nigerian Benue Trough (MBT) and other geologically similar environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38890381</pmid><doi>10.1038/s41598-024-63996-8</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-06, Vol.14 (1), p.14031-18 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cc617909cc434ec883b4d53555e08831 |
source | PubMed (Medline); Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/2151/213 704/2151/213/4115 Geographic information systems Geophysics Humanities and Social Sciences Mineral exploration Mineral resources multidisciplinary Prediction models Remote sensing Science Science (multidisciplinary) Spatial data Thorium |
title | GIS-based multi-criteria decision models for barite exploration in Nigeria’s Benue Trough |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIS-based%20multi-criteria%20decision%20models%20for%20barite%20exploration%20in%20Nigeria%E2%80%99s%20Benue%20Trough&rft.jtitle=Scientific%20reports&rft.au=Gajere,%20Jiriko%20N.&rft.date=2024-06-18&rft.volume=14&rft.issue=1&rft.spage=14031&rft.epage=18&rft.pages=14031-18&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-63996-8&rft_dat=%3Cproquest_doaj_%3E3070797231%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d379t-702284ea00796960239c87f6ab8c637487273fdb70619f97b5d54fab8d17c2013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069392325&rft_id=info:pmid/38890381&rfr_iscdi=true |