Loading…
Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings
Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the el...
Saved in:
Published in: | Micromachines (Basel) 2019-03, Vol.10 (3), p.211 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3 |
container_end_page | |
container_issue | 3 |
container_start_page | 211 |
container_title | Micromachines (Basel) |
container_volume | 10 |
creator | Elvira-Hernández, Ernesto A Uscanga-González, Luis A de León, Arxel López-Huerta, Francisco Herrera-May, Agustín L |
description | Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors. |
doi_str_mv | 10.3390/mi10030211 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8</doaj_id><sourcerecordid>2548997325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</originalsourceid><addsrcrecordid>eNpdkm1rFDEQxxdRbKl94weQgG9EOE2yD9m8Eepx2kKPimjxXZhLJtcc2U1Ndg_Oj-MnNXtXa2sgD2R-889kZoriJaPvylLS951jlJaUM_akOOZU8FnTND-ePjgfFacpbWgeQsi8PC-OSiqZqGt6XPxeeNRDDB3qG-idBk-WwaB3_ZoES4B8cfgr4B5ymly7VYTBhZ4seozrHTmHuMU0TPjS6Zhdt04j-QgJDcnYcvSD87DDSL5iCj0MIRKb55mLZB564ya1yf0a-yERGMiVtXuJ0XmTDelF8cyCT3h6t58U3z8tvs3PZ5dXny_mZ5czXQk-zJhlmmLLmsqgMZZK4FbXUHMLuuaVbIXmom5auUKgAnTTcFZjybURZnIpT4qLg64JsFG30XUQdyqAU_uLENcK4uC0R6W14Pktw0DLqgaQpdYMua0qrEq-arPWh4PW7bjq0Oj8twj-kehjS-9u1DpsVVOJXE-WBd7cCcTwc8wZVp1LGr2HHsOYFGdSspY3vM7o6__QTRhjn1OleF21UopyT709ULlIKUW098EwqqZOUv86KcOvHoZ_j_7tm_IPh9zHgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548997325</pqid></control><display><type>article</type><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</creator><creatorcontrib>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</creatorcontrib><description>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10030211</identifier><identifier>PMID: 30917550</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air conditioning ; Aluminum ; Beam theory (structures) ; Damping ; Design ; Electrodes ; electromechanical modeling ; Electronic devices ; Energy conservation ; Energy harvesting ; Euler-Bernoulli beam theory ; Euler-Bernoulli beams ; Finite element analysis ; Finite element method ; Internet of Things ; Load resistance ; Macaulay method ; Mathematical models ; microdevice ; Microelectromechanical systems ; Modelling ; multilayer beams ; Multilayers ; Office buildings ; piezoelectric energy harvesting ; Piezoelectricity ; Polyethylene terephthalate ; Rayleigh method ; Resonant frequencies ; resonator ; Resonators ; Shear strain ; Substrates ; Thickness ; Vents ; Vibration ; Wind power ; Zinc oxide ; Zinc oxides</subject><ispartof>Micromachines (Basel), 2019-03, Vol.10 (3), p.211</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</citedby><cites>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</cites><orcidid>0000-0001-9740-579X ; 0000-0002-7373-9258 ; 0009-0004-5521-1419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548997325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548997325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elvira-Hernández, Ernesto A</creatorcontrib><creatorcontrib>Uscanga-González, Luis A</creatorcontrib><creatorcontrib>de León, Arxel</creatorcontrib><creatorcontrib>López-Huerta, Francisco</creatorcontrib><creatorcontrib>Herrera-May, Agustín L</creatorcontrib><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</description><subject>Air conditioning</subject><subject>Aluminum</subject><subject>Beam theory (structures)</subject><subject>Damping</subject><subject>Design</subject><subject>Electrodes</subject><subject>electromechanical modeling</subject><subject>Electronic devices</subject><subject>Energy conservation</subject><subject>Energy harvesting</subject><subject>Euler-Bernoulli beam theory</subject><subject>Euler-Bernoulli beams</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Internet of Things</subject><subject>Load resistance</subject><subject>Macaulay method</subject><subject>Mathematical models</subject><subject>microdevice</subject><subject>Microelectromechanical systems</subject><subject>Modelling</subject><subject>multilayer beams</subject><subject>Multilayers</subject><subject>Office buildings</subject><subject>piezoelectric energy harvesting</subject><subject>Piezoelectricity</subject><subject>Polyethylene terephthalate</subject><subject>Rayleigh method</subject><subject>Resonant frequencies</subject><subject>resonator</subject><subject>Resonators</subject><subject>Shear strain</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Vents</subject><subject>Vibration</subject><subject>Wind power</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkm1rFDEQxxdRbKl94weQgG9EOE2yD9m8Eepx2kKPimjxXZhLJtcc2U1Ndg_Oj-MnNXtXa2sgD2R-889kZoriJaPvylLS951jlJaUM_akOOZU8FnTND-ePjgfFacpbWgeQsi8PC-OSiqZqGt6XPxeeNRDDB3qG-idBk-WwaB3_ZoES4B8cfgr4B5ymly7VYTBhZ4seozrHTmHuMU0TPjS6Zhdt04j-QgJDcnYcvSD87DDSL5iCj0MIRKb55mLZB564ya1yf0a-yERGMiVtXuJ0XmTDelF8cyCT3h6t58U3z8tvs3PZ5dXny_mZ5czXQk-zJhlmmLLmsqgMZZK4FbXUHMLuuaVbIXmom5auUKgAnTTcFZjybURZnIpT4qLg64JsFG30XUQdyqAU_uLENcK4uC0R6W14Pktw0DLqgaQpdYMua0qrEq-arPWh4PW7bjq0Oj8twj-kehjS-9u1DpsVVOJXE-WBd7cCcTwc8wZVp1LGr2HHsOYFGdSspY3vM7o6__QTRhjn1OleF21UopyT709ULlIKUW098EwqqZOUv86KcOvHoZ_j_7tm_IPh9zHgg</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Elvira-Hernández, Ernesto A</creator><creator>Uscanga-González, Luis A</creator><creator>de León, Arxel</creator><creator>López-Huerta, Francisco</creator><creator>Herrera-May, Agustín L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9740-579X</orcidid><orcidid>https://orcid.org/0000-0002-7373-9258</orcidid><orcidid>https://orcid.org/0009-0004-5521-1419</orcidid></search><sort><creationdate>20190326</creationdate><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><author>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air conditioning</topic><topic>Aluminum</topic><topic>Beam theory (structures)</topic><topic>Damping</topic><topic>Design</topic><topic>Electrodes</topic><topic>electromechanical modeling</topic><topic>Electronic devices</topic><topic>Energy conservation</topic><topic>Energy harvesting</topic><topic>Euler-Bernoulli beam theory</topic><topic>Euler-Bernoulli beams</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Internet of Things</topic><topic>Load resistance</topic><topic>Macaulay method</topic><topic>Mathematical models</topic><topic>microdevice</topic><topic>Microelectromechanical systems</topic><topic>Modelling</topic><topic>multilayer beams</topic><topic>Multilayers</topic><topic>Office buildings</topic><topic>piezoelectric energy harvesting</topic><topic>Piezoelectricity</topic><topic>Polyethylene terephthalate</topic><topic>Rayleigh method</topic><topic>Resonant frequencies</topic><topic>resonator</topic><topic>Resonators</topic><topic>Shear strain</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Vents</topic><topic>Vibration</topic><topic>Wind power</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elvira-Hernández, Ernesto A</creatorcontrib><creatorcontrib>Uscanga-González, Luis A</creatorcontrib><creatorcontrib>de León, Arxel</creatorcontrib><creatorcontrib>López-Huerta, Francisco</creatorcontrib><creatorcontrib>Herrera-May, Agustín L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elvira-Hernández, Ernesto A</au><au>Uscanga-González, Luis A</au><au>de León, Arxel</au><au>López-Huerta, Francisco</au><au>Herrera-May, Agustín L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-03-26</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>211</spage><pages>211-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30917550</pmid><doi>10.3390/mi10030211</doi><orcidid>https://orcid.org/0000-0001-9740-579X</orcidid><orcidid>https://orcid.org/0000-0002-7373-9258</orcidid><orcidid>https://orcid.org/0009-0004-5521-1419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2019-03, Vol.10 (3), p.211 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8 |
source | Publicly Available Content Database; PubMed Central |
subjects | Air conditioning Aluminum Beam theory (structures) Damping Design Electrodes electromechanical modeling Electronic devices Energy conservation Energy harvesting Euler-Bernoulli beam theory Euler-Bernoulli beams Finite element analysis Finite element method Internet of Things Load resistance Macaulay method Mathematical models microdevice Microelectromechanical systems Modelling multilayer beams Multilayers Office buildings piezoelectric energy harvesting Piezoelectricity Polyethylene terephthalate Rayleigh method Resonant frequencies resonator Resonators Shear strain Substrates Thickness Vents Vibration Wind power Zinc oxide Zinc oxides |
title | Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20Modeling%20of%20a%20Piezoelectric%20Vibration%20Energy%20Harvesting%20Microdevice%20Based%20on%20Multilayer%20Resonator%20for%20Air%20Conditioning%20Vents%20at%20Office%20Buildings&rft.jtitle=Micromachines%20(Basel)&rft.au=Elvira-Hern%C3%A1ndez,%20Ernesto%20A&rft.date=2019-03-26&rft.volume=10&rft.issue=3&rft.spage=211&rft.pages=211-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10030211&rft_dat=%3Cproquest_doaj_%3E2548997325%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548997325&rft_id=info:pmid/30917550&rfr_iscdi=true |