Loading…

Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings

Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the el...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2019-03, Vol.10 (3), p.211
Main Authors: Elvira-Hernández, Ernesto A, Uscanga-González, Luis A, de León, Arxel, López-Huerta, Francisco, Herrera-May, Agustín L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3
cites cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3
container_end_page
container_issue 3
container_start_page 211
container_title Micromachines (Basel)
container_volume 10
creator Elvira-Hernández, Ernesto A
Uscanga-González, Luis A
de León, Arxel
López-Huerta, Francisco
Herrera-May, Agustín L
description Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.
doi_str_mv 10.3390/mi10030211
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8</doaj_id><sourcerecordid>2548997325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</originalsourceid><addsrcrecordid>eNpdkm1rFDEQxxdRbKl94weQgG9EOE2yD9m8Eepx2kKPimjxXZhLJtcc2U1Ndg_Oj-MnNXtXa2sgD2R-889kZoriJaPvylLS951jlJaUM_akOOZU8FnTND-ePjgfFacpbWgeQsi8PC-OSiqZqGt6XPxeeNRDDB3qG-idBk-WwaB3_ZoES4B8cfgr4B5ymly7VYTBhZ4seozrHTmHuMU0TPjS6Zhdt04j-QgJDcnYcvSD87DDSL5iCj0MIRKb55mLZB564ya1yf0a-yERGMiVtXuJ0XmTDelF8cyCT3h6t58U3z8tvs3PZ5dXny_mZ5czXQk-zJhlmmLLmsqgMZZK4FbXUHMLuuaVbIXmom5auUKgAnTTcFZjybURZnIpT4qLg64JsFG30XUQdyqAU_uLENcK4uC0R6W14Pktw0DLqgaQpdYMua0qrEq-arPWh4PW7bjq0Oj8twj-kehjS-9u1DpsVVOJXE-WBd7cCcTwc8wZVp1LGr2HHsOYFGdSspY3vM7o6__QTRhjn1OleF21UopyT709ULlIKUW098EwqqZOUv86KcOvHoZ_j_7tm_IPh9zHgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548997325</pqid></control><display><type>article</type><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</creator><creatorcontrib>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</creatorcontrib><description>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10030211</identifier><identifier>PMID: 30917550</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air conditioning ; Aluminum ; Beam theory (structures) ; Damping ; Design ; Electrodes ; electromechanical modeling ; Electronic devices ; Energy conservation ; Energy harvesting ; Euler-Bernoulli beam theory ; Euler-Bernoulli beams ; Finite element analysis ; Finite element method ; Internet of Things ; Load resistance ; Macaulay method ; Mathematical models ; microdevice ; Microelectromechanical systems ; Modelling ; multilayer beams ; Multilayers ; Office buildings ; piezoelectric energy harvesting ; Piezoelectricity ; Polyethylene terephthalate ; Rayleigh method ; Resonant frequencies ; resonator ; Resonators ; Shear strain ; Substrates ; Thickness ; Vents ; Vibration ; Wind power ; Zinc oxide ; Zinc oxides</subject><ispartof>Micromachines (Basel), 2019-03, Vol.10 (3), p.211</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</citedby><cites>FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</cites><orcidid>0000-0001-9740-579X ; 0000-0002-7373-9258 ; 0009-0004-5521-1419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548997325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548997325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elvira-Hernández, Ernesto A</creatorcontrib><creatorcontrib>Uscanga-González, Luis A</creatorcontrib><creatorcontrib>de León, Arxel</creatorcontrib><creatorcontrib>López-Huerta, Francisco</creatorcontrib><creatorcontrib>Herrera-May, Agustín L</creatorcontrib><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</description><subject>Air conditioning</subject><subject>Aluminum</subject><subject>Beam theory (structures)</subject><subject>Damping</subject><subject>Design</subject><subject>Electrodes</subject><subject>electromechanical modeling</subject><subject>Electronic devices</subject><subject>Energy conservation</subject><subject>Energy harvesting</subject><subject>Euler-Bernoulli beam theory</subject><subject>Euler-Bernoulli beams</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Internet of Things</subject><subject>Load resistance</subject><subject>Macaulay method</subject><subject>Mathematical models</subject><subject>microdevice</subject><subject>Microelectromechanical systems</subject><subject>Modelling</subject><subject>multilayer beams</subject><subject>Multilayers</subject><subject>Office buildings</subject><subject>piezoelectric energy harvesting</subject><subject>Piezoelectricity</subject><subject>Polyethylene terephthalate</subject><subject>Rayleigh method</subject><subject>Resonant frequencies</subject><subject>resonator</subject><subject>Resonators</subject><subject>Shear strain</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Vents</subject><subject>Vibration</subject><subject>Wind power</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkm1rFDEQxxdRbKl94weQgG9EOE2yD9m8Eepx2kKPimjxXZhLJtcc2U1Ndg_Oj-MnNXtXa2sgD2R-889kZoriJaPvylLS951jlJaUM_akOOZU8FnTND-ePjgfFacpbWgeQsi8PC-OSiqZqGt6XPxeeNRDDB3qG-idBk-WwaB3_ZoES4B8cfgr4B5ymly7VYTBhZ4seozrHTmHuMU0TPjS6Zhdt04j-QgJDcnYcvSD87DDSL5iCj0MIRKb55mLZB564ya1yf0a-yERGMiVtXuJ0XmTDelF8cyCT3h6t58U3z8tvs3PZ5dXny_mZ5czXQk-zJhlmmLLmsqgMZZK4FbXUHMLuuaVbIXmom5auUKgAnTTcFZjybURZnIpT4qLg64JsFG30XUQdyqAU_uLENcK4uC0R6W14Pktw0DLqgaQpdYMua0qrEq-arPWh4PW7bjq0Oj8twj-kehjS-9u1DpsVVOJXE-WBd7cCcTwc8wZVp1LGr2HHsOYFGdSspY3vM7o6__QTRhjn1OleF21UopyT709ULlIKUW098EwqqZOUv86KcOvHoZ_j_7tm_IPh9zHgg</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Elvira-Hernández, Ernesto A</creator><creator>Uscanga-González, Luis A</creator><creator>de León, Arxel</creator><creator>López-Huerta, Francisco</creator><creator>Herrera-May, Agustín L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9740-579X</orcidid><orcidid>https://orcid.org/0000-0002-7373-9258</orcidid><orcidid>https://orcid.org/0009-0004-5521-1419</orcidid></search><sort><creationdate>20190326</creationdate><title>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</title><author>Elvira-Hernández, Ernesto A ; Uscanga-González, Luis A ; de León, Arxel ; López-Huerta, Francisco ; Herrera-May, Agustín L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air conditioning</topic><topic>Aluminum</topic><topic>Beam theory (structures)</topic><topic>Damping</topic><topic>Design</topic><topic>Electrodes</topic><topic>electromechanical modeling</topic><topic>Electronic devices</topic><topic>Energy conservation</topic><topic>Energy harvesting</topic><topic>Euler-Bernoulli beam theory</topic><topic>Euler-Bernoulli beams</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Internet of Things</topic><topic>Load resistance</topic><topic>Macaulay method</topic><topic>Mathematical models</topic><topic>microdevice</topic><topic>Microelectromechanical systems</topic><topic>Modelling</topic><topic>multilayer beams</topic><topic>Multilayers</topic><topic>Office buildings</topic><topic>piezoelectric energy harvesting</topic><topic>Piezoelectricity</topic><topic>Polyethylene terephthalate</topic><topic>Rayleigh method</topic><topic>Resonant frequencies</topic><topic>resonator</topic><topic>Resonators</topic><topic>Shear strain</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Vents</topic><topic>Vibration</topic><topic>Wind power</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elvira-Hernández, Ernesto A</creatorcontrib><creatorcontrib>Uscanga-González, Luis A</creatorcontrib><creatorcontrib>de León, Arxel</creatorcontrib><creatorcontrib>López-Huerta, Francisco</creatorcontrib><creatorcontrib>Herrera-May, Agustín L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elvira-Hernández, Ernesto A</au><au>Uscanga-González, Luis A</au><au>de León, Arxel</au><au>López-Huerta, Francisco</au><au>Herrera-May, Agustín L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-03-26</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>211</spage><pages>211-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30917550</pmid><doi>10.3390/mi10030211</doi><orcidid>https://orcid.org/0000-0001-9740-579X</orcidid><orcidid>https://orcid.org/0000-0002-7373-9258</orcidid><orcidid>https://orcid.org/0009-0004-5521-1419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2019-03, Vol.10 (3), p.211
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc720e8d1ac945aa93cc1e2f44e432b8
source Publicly Available Content Database; PubMed Central
subjects Air conditioning
Aluminum
Beam theory (structures)
Damping
Design
Electrodes
electromechanical modeling
Electronic devices
Energy conservation
Energy harvesting
Euler-Bernoulli beam theory
Euler-Bernoulli beams
Finite element analysis
Finite element method
Internet of Things
Load resistance
Macaulay method
Mathematical models
microdevice
Microelectromechanical systems
Modelling
multilayer beams
Multilayers
Office buildings
piezoelectric energy harvesting
Piezoelectricity
Polyethylene terephthalate
Rayleigh method
Resonant frequencies
resonator
Resonators
Shear strain
Substrates
Thickness
Vents
Vibration
Wind power
Zinc oxide
Zinc oxides
title Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20Modeling%20of%20a%20Piezoelectric%20Vibration%20Energy%20Harvesting%20Microdevice%20Based%20on%20Multilayer%20Resonator%20for%20Air%20Conditioning%20Vents%20at%20Office%20Buildings&rft.jtitle=Micromachines%20(Basel)&rft.au=Elvira-Hern%C3%A1ndez,%20Ernesto%20A&rft.date=2019-03-26&rft.volume=10&rft.issue=3&rft.spage=211&rft.pages=211-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10030211&rft_dat=%3Cproquest_doaj_%3E2548997325%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-1f1c0e8164deddf09a2fc5a52fac524987c275689bea07ac66215e32cd7d4ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548997325&rft_id=info:pmid/30917550&rfr_iscdi=true