Loading…

Archiving information from geotagged tweets to promote reproducibility and comparability in social media research

Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data repositories and other research infrastructure and research su...

Full description

Saved in:
Bibliographic Details
Published in:Big data & society 2017-10, Vol.4 (2), p.205395171773633
Main Authors: Kinder-Kurlanda, Katharina, Weller, Katrin, Zenk-Möltgen, Wolfgang, Pfeffer, Jürgen, Morstatter, Fred
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3
cites cdi_FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3
container_end_page
container_issue 2
container_start_page 205395171773633
container_title Big data & society
container_volume 4
creator Kinder-Kurlanda, Katharina
Weller, Katrin
Zenk-Möltgen, Wolfgang
Pfeffer, Jürgen
Morstatter, Fred
description Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data repositories and other research infrastructure and research support institutions are only starting to target social media researchers. In this paper, we present a practical solution to sharing social media data with the help of a social science data archive. Our aim is to contribute to the effort of enhancing comparability and reproducibility in social media research by taking some first steps towards setting standards for sustainable data archiving. We present a showcase for sharing social media data with the example of a big dataset containing geotagged tweets (several months of continued geotagged tweets from the United States from 2014 and 2015; nearly half a billion tweets in total) through a research data archive. We provide a general background to the process of long-term archiving of research data. After some consideration of the current obstacles for sharing and archiving social media data, we present our solution of archiving the specific dataset of geotagged tweets at the GESIS Data Archive for the Social Sciences, a publicly funded German data archive for secure and long-term archiving of social science data. We archived and documented tweet IDs and additional information to improve reproducibility of the initial research while also attending to ethical and legal considerations, and taking into account Twitter’s terms of service in particular.
doi_str_mv 10.1177/2053951717736336
format article
fullrecord <record><control><sourceid>sage_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc83b44d69244ff3a3d3c742c254120f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2053951717736336</sage_id><doaj_id>oai_doaj_org_article_cc83b44d69244ff3a3d3c742c254120f</doaj_id><sourcerecordid>10.1177_2053951717736336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3</originalsourceid><addsrcrecordid>eNp1UU1LAzEQXUTBor17zB9YTTLZ7O6xFL-g4EXPy2w-1pTupiap0n9vakVE8DLzeDPvDcMriitGrxmr6xtOK2grVmcMEkCeFLMDVR6401_4vJjHuKaUMtFUIJpZ8bYI6tW9u2kgbrI-jJicn4gNfiSD8QmHwWiSPoxJkSRPtnngkyHBZKR3yvVu49Ke4KSJ8uMWA34zbiLRK4cbMhrtMCuiwXzssjizuIlm_t0vipe72-flQ7l6un9cLlalElCn0rQNCGZbCb2s0Jq2l7KRDdONkhWAohx1C9wyJRm3vaZMo86VVQp4LXu4KB6PvtrjutsGN2LYdx5d90X4MHQYklMb0ynVQC-Eli0XwlpA0KBqwRWvBOPUZi969FLBxxiM_fFjtDsk0P1NIEvKoyTiYLq134Upf_v__icGVIc_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Archiving information from geotagged tweets to promote reproducibility and comparability in social media research</title><source>SAGE Open Access Journals</source><creator>Kinder-Kurlanda, Katharina ; Weller, Katrin ; Zenk-Möltgen, Wolfgang ; Pfeffer, Jürgen ; Morstatter, Fred</creator><creatorcontrib>Kinder-Kurlanda, Katharina ; Weller, Katrin ; Zenk-Möltgen, Wolfgang ; Pfeffer, Jürgen ; Morstatter, Fred</creatorcontrib><description>Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data repositories and other research infrastructure and research support institutions are only starting to target social media researchers. In this paper, we present a practical solution to sharing social media data with the help of a social science data archive. Our aim is to contribute to the effort of enhancing comparability and reproducibility in social media research by taking some first steps towards setting standards for sustainable data archiving. We present a showcase for sharing social media data with the example of a big dataset containing geotagged tweets (several months of continued geotagged tweets from the United States from 2014 and 2015; nearly half a billion tweets in total) through a research data archive. We provide a general background to the process of long-term archiving of research data. After some consideration of the current obstacles for sharing and archiving social media data, we present our solution of archiving the specific dataset of geotagged tweets at the GESIS Data Archive for the Social Sciences, a publicly funded German data archive for secure and long-term archiving of social science data. We archived and documented tweet IDs and additional information to improve reproducibility of the initial research while also attending to ethical and legal considerations, and taking into account Twitter’s terms of service in particular.</description><identifier>ISSN: 2053-9517</identifier><identifier>EISSN: 2053-9517</identifier><identifier>DOI: 10.1177/2053951717736336</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Big data &amp; society, 2017-10, Vol.4 (2), p.205395171773633</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3</citedby><cites>FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2053951717736336$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2053951717736336$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21946,27832,27903,27904,44924,45312</link.rule.ids></links><search><creatorcontrib>Kinder-Kurlanda, Katharina</creatorcontrib><creatorcontrib>Weller, Katrin</creatorcontrib><creatorcontrib>Zenk-Möltgen, Wolfgang</creatorcontrib><creatorcontrib>Pfeffer, Jürgen</creatorcontrib><creatorcontrib>Morstatter, Fred</creatorcontrib><title>Archiving information from geotagged tweets to promote reproducibility and comparability in social media research</title><title>Big data &amp; society</title><description>Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data repositories and other research infrastructure and research support institutions are only starting to target social media researchers. In this paper, we present a practical solution to sharing social media data with the help of a social science data archive. Our aim is to contribute to the effort of enhancing comparability and reproducibility in social media research by taking some first steps towards setting standards for sustainable data archiving. We present a showcase for sharing social media data with the example of a big dataset containing geotagged tweets (several months of continued geotagged tweets from the United States from 2014 and 2015; nearly half a billion tweets in total) through a research data archive. We provide a general background to the process of long-term archiving of research data. After some consideration of the current obstacles for sharing and archiving social media data, we present our solution of archiving the specific dataset of geotagged tweets at the GESIS Data Archive for the Social Sciences, a publicly funded German data archive for secure and long-term archiving of social science data. We archived and documented tweet IDs and additional information to improve reproducibility of the initial research while also attending to ethical and legal considerations, and taking into account Twitter’s terms of service in particular.</description><issn>2053-9517</issn><issn>2053-9517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1LAzEQXUTBor17zB9YTTLZ7O6xFL-g4EXPy2w-1pTupiap0n9vakVE8DLzeDPvDcMriitGrxmr6xtOK2grVmcMEkCeFLMDVR6401_4vJjHuKaUMtFUIJpZ8bYI6tW9u2kgbrI-jJicn4gNfiSD8QmHwWiSPoxJkSRPtnngkyHBZKR3yvVu49Ke4KSJ8uMWA34zbiLRK4cbMhrtMCuiwXzssjizuIlm_t0vipe72-flQ7l6un9cLlalElCn0rQNCGZbCb2s0Jq2l7KRDdONkhWAohx1C9wyJRm3vaZMo86VVQp4LXu4KB6PvtrjutsGN2LYdx5d90X4MHQYklMb0ynVQC-Eli0XwlpA0KBqwRWvBOPUZi969FLBxxiM_fFjtDsk0P1NIEvKoyTiYLq134Upf_v__icGVIc_</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Kinder-Kurlanda, Katharina</creator><creator>Weller, Katrin</creator><creator>Zenk-Möltgen, Wolfgang</creator><creator>Pfeffer, Jürgen</creator><creator>Morstatter, Fred</creator><general>SAGE Publications</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201710</creationdate><title>Archiving information from geotagged tweets to promote reproducibility and comparability in social media research</title><author>Kinder-Kurlanda, Katharina ; Weller, Katrin ; Zenk-Möltgen, Wolfgang ; Pfeffer, Jürgen ; Morstatter, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinder-Kurlanda, Katharina</creatorcontrib><creatorcontrib>Weller, Katrin</creatorcontrib><creatorcontrib>Zenk-Möltgen, Wolfgang</creatorcontrib><creatorcontrib>Pfeffer, Jürgen</creatorcontrib><creatorcontrib>Morstatter, Fred</creatorcontrib><collection>SAGE Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Big data &amp; society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinder-Kurlanda, Katharina</au><au>Weller, Katrin</au><au>Zenk-Möltgen, Wolfgang</au><au>Pfeffer, Jürgen</au><au>Morstatter, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Archiving information from geotagged tweets to promote reproducibility and comparability in social media research</atitle><jtitle>Big data &amp; society</jtitle><date>2017-10</date><risdate>2017</risdate><volume>4</volume><issue>2</issue><spage>205395171773633</spage><pages>205395171773633-</pages><issn>2053-9517</issn><eissn>2053-9517</eissn><abstract>Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data repositories and other research infrastructure and research support institutions are only starting to target social media researchers. In this paper, we present a practical solution to sharing social media data with the help of a social science data archive. Our aim is to contribute to the effort of enhancing comparability and reproducibility in social media research by taking some first steps towards setting standards for sustainable data archiving. We present a showcase for sharing social media data with the example of a big dataset containing geotagged tweets (several months of continued geotagged tweets from the United States from 2014 and 2015; nearly half a billion tweets in total) through a research data archive. We provide a general background to the process of long-term archiving of research data. After some consideration of the current obstacles for sharing and archiving social media data, we present our solution of archiving the specific dataset of geotagged tweets at the GESIS Data Archive for the Social Sciences, a publicly funded German data archive for secure and long-term archiving of social science data. We archived and documented tweet IDs and additional information to improve reproducibility of the initial research while also attending to ethical and legal considerations, and taking into account Twitter’s terms of service in particular.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/2053951717736336</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-9517
ispartof Big data & society, 2017-10, Vol.4 (2), p.205395171773633
issn 2053-9517
2053-9517
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc83b44d69244ff3a3d3c742c254120f
source SAGE Open Access Journals
title Archiving information from geotagged tweets to promote reproducibility and comparability in social media research
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Archiving%20information%20from%20geotagged%20tweets%20to%20promote%20reproducibility%20and%20comparability%20in%20social%20media%20research&rft.jtitle=Big%20data%20&%20society&rft.au=Kinder-Kurlanda,%20Katharina&rft.date=2017-10&rft.volume=4&rft.issue=2&rft.spage=205395171773633&rft.pages=205395171773633-&rft.issn=2053-9517&rft.eissn=2053-9517&rft_id=info:doi/10.1177/2053951717736336&rft_dat=%3Csage_doaj_%3E10.1177_2053951717736336%3C/sage_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-e98341f963b65afe9b668681d8c6533c02ad932f1c612fbd01dadd0115c3276b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_2053951717736336&rfr_iscdi=true