Loading…

A comprehensive mechanistic model of adipocyte signaling with layers of confidence

Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular respon...

Full description

Saved in:
Bibliographic Details
Published in:NPJ systems biology and applications 2023-06, Vol.9 (1), p.24-24, Article 24
Main Authors: Lövfors, William, Magnusson, Rasmus, Jönsson, Cecilia, Gustafsson, Mika, Olofsson, Charlotta S., Cedersund, Gunnar, Nyman, Elin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c643t-54ecc417a114af4d7321d7cf85bb37eeb839712af3567fef2144375027ce207b3
container_end_page 24
container_issue 1
container_start_page 24
container_title NPJ systems biology and applications
container_volume 9
creator Lövfors, William
Magnusson, Rasmus
Jönsson, Cecilia
Gustafsson, Mika
Olofsson, Charlotta S.
Cedersund, Gunnar
Nyman, Elin
description Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.
doi_str_mv 10.1038/s41540-023-00282-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cc9cf96f241a478db28a7eef0063ae70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cc9cf96f241a478db28a7eef0063ae70</doaj_id><sourcerecordid>2823992085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-54ecc417a114af4d7321d7cf85bb37eeb839712af3567fef2144375027ce207b3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBIrFhQYp97cTOCo3Ko5UqISFgaznOdcajJB7spNX8ezwPSodFYWXr-rvn-Nony15SckEJk-8ipyUnBQFWEAISivpJdgqkrApBZf30wf4kO49xRQihFeNAyfPshAmQVVWz0-zrIjd-WAdc4hjdLeYDmqUeXZycyQffYp97m-vWrb3ZTJhH1426d2OX37lpmfd6gyFuEeNH61ocDb7InlndRzw_rGfZ908fv11eFTdfPl9fLm4KU3E2FSVHYzgVmlKuLW8FA9oKY2XZNEwgNpLVgoK2rKyERQuUcyZKAsIgENGws-x6r9t6vVLr4AYdNsprp3YFHzqlQxqjR2VMbWxdWeBUcyHbBqROFpaQimkUJGkVe614h-u5OVLr5rVKpW5WERUDUUP1KP_B_Vjs3H2YFU0OQP6P713i6zJ9TeLf_ptfuqgAhKQJf7_HEztga3Ccgu6Puo5PRrdUnb9N1wPOKfCk8OagEPzPGeOkBhcN9r0e0c_JRwKrayCyTOjrv9CVn0NKxY6qJEhGthTsKRN8jAHt_W0oUdsEq32CVUqw2iVY1anp1cM57lt-5zUB7PAu6WjsMPzxfkT2F_a0_QM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826828305</pqid></control><display><type>article</type><title>A comprehensive mechanistic model of adipocyte signaling with layers of confidence</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lövfors, William ; Magnusson, Rasmus ; Jönsson, Cecilia ; Gustafsson, Mika ; Olofsson, Charlotta S. ; Cedersund, Gunnar ; Nyman, Elin</creator><creatorcontrib>Lövfors, William ; Magnusson, Rasmus ; Jönsson, Cecilia ; Gustafsson, Mika ; Olofsson, Charlotta S. ; Cedersund, Gunnar ; Nyman, Elin</creatorcontrib><description>Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.</description><identifier>ISSN: 2056-7189</identifier><identifier>EISSN: 2056-7189</identifier><identifier>DOI: 10.1038/s41540-023-00282-9</identifier><identifier>PMID: 37286693</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/553/2695 ; 631/553/2701 ; 631/553/2712 ; Adipocytes ; Adipocytes - metabolism ; Adiponectin ; Bioinformatics ; Bioinformatics (Computational Biology) ; Bioinformatik ; Bioinformatik (beräkningsbiologi) ; Biomedical and Life Sciences ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - metabolism ; Humans ; Insulin ; Life Sciences ; Lipolysis ; Lipolysis - physiology ; Mathematical models ; Protein interaction ; Signal Transduction - physiology ; Systems Biology</subject><ispartof>NPJ systems biology and applications, 2023-06, Vol.9 (1), p.24-24, Article 24</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c643t-54ecc417a114af4d7321d7cf85bb37eeb839712af3567fef2144375027ce207b3</cites><orcidid>0000-0001-9395-6025 ; 0000-0002-0048-4063 ; 0000-0002-9058-7049 ; 0000-0002-4261-0291 ; 0000-0003-0981-0264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2826828305/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2826828305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-22781$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-195286$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-106320$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/327926$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lövfors, William</creatorcontrib><creatorcontrib>Magnusson, Rasmus</creatorcontrib><creatorcontrib>Jönsson, Cecilia</creatorcontrib><creatorcontrib>Gustafsson, Mika</creatorcontrib><creatorcontrib>Olofsson, Charlotta S.</creatorcontrib><creatorcontrib>Cedersund, Gunnar</creatorcontrib><creatorcontrib>Nyman, Elin</creatorcontrib><title>A comprehensive mechanistic model of adipocyte signaling with layers of confidence</title><title>NPJ systems biology and applications</title><addtitle>npj Syst Biol Appl</addtitle><addtitle>NPJ Syst Biol Appl</addtitle><description>Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.</description><subject>631/553/2695</subject><subject>631/553/2701</subject><subject>631/553/2712</subject><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Adiponectin</subject><subject>Bioinformatics</subject><subject>Bioinformatics (Computational Biology)</subject><subject>Bioinformatik</subject><subject>Bioinformatik (beräkningsbiologi)</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Humans</subject><subject>Insulin</subject><subject>Life Sciences</subject><subject>Lipolysis</subject><subject>Lipolysis - physiology</subject><subject>Mathematical models</subject><subject>Protein interaction</subject><subject>Signal Transduction - physiology</subject><subject>Systems Biology</subject><issn>2056-7189</issn><issn>2056-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBIrFhQYp97cTOCo3Ko5UqISFgaznOdcajJB7spNX8ezwPSodFYWXr-rvn-Nony15SckEJk-8ipyUnBQFWEAISivpJdgqkrApBZf30wf4kO49xRQihFeNAyfPshAmQVVWz0-zrIjd-WAdc4hjdLeYDmqUeXZycyQffYp97m-vWrb3ZTJhH1426d2OX37lpmfd6gyFuEeNH61ocDb7InlndRzw_rGfZ908fv11eFTdfPl9fLm4KU3E2FSVHYzgVmlKuLW8FA9oKY2XZNEwgNpLVgoK2rKyERQuUcyZKAsIgENGws-x6r9t6vVLr4AYdNsprp3YFHzqlQxqjR2VMbWxdWeBUcyHbBqROFpaQimkUJGkVe614h-u5OVLr5rVKpW5WERUDUUP1KP_B_Vjs3H2YFU0OQP6P713i6zJ9TeLf_ptfuqgAhKQJf7_HEztga3Ccgu6Puo5PRrdUnb9N1wPOKfCk8OagEPzPGeOkBhcN9r0e0c_JRwKrayCyTOjrv9CVn0NKxY6qJEhGthTsKRN8jAHt_W0oUdsEq32CVUqw2iVY1anp1cM57lt-5zUB7PAu6WjsMPzxfkT2F_a0_QM</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Lövfors, William</creator><creator>Magnusson, Rasmus</creator><creator>Jönsson, Cecilia</creator><creator>Gustafsson, Mika</creator><creator>Olofsson, Charlotta S.</creator><creator>Cedersund, Gunnar</creator><creator>Nyman, Elin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ABSHZ</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF6</scope><scope>ZZAVC</scope><scope>ABXSW</scope><scope>DG8</scope><scope>AABEP</scope><scope>D91</scope><scope>F1U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9395-6025</orcidid><orcidid>https://orcid.org/0000-0002-0048-4063</orcidid><orcidid>https://orcid.org/0000-0002-9058-7049</orcidid><orcidid>https://orcid.org/0000-0002-4261-0291</orcidid><orcidid>https://orcid.org/0000-0003-0981-0264</orcidid></search><sort><creationdate>20230607</creationdate><title>A comprehensive mechanistic model of adipocyte signaling with layers of confidence</title><author>Lövfors, William ; Magnusson, Rasmus ; Jönsson, Cecilia ; Gustafsson, Mika ; Olofsson, Charlotta S. ; Cedersund, Gunnar ; Nyman, Elin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-54ecc417a114af4d7321d7cf85bb37eeb839712af3567fef2144375027ce207b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/553/2695</topic><topic>631/553/2701</topic><topic>631/553/2712</topic><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Adiponectin</topic><topic>Bioinformatics</topic><topic>Bioinformatics (Computational Biology)</topic><topic>Bioinformatik</topic><topic>Bioinformatik (beräkningsbiologi)</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Humans</topic><topic>Insulin</topic><topic>Life Sciences</topic><topic>Lipolysis</topic><topic>Lipolysis - physiology</topic><topic>Mathematical models</topic><topic>Protein interaction</topic><topic>Signal Transduction - physiology</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lövfors, William</creatorcontrib><creatorcontrib>Magnusson, Rasmus</creatorcontrib><creatorcontrib>Jönsson, Cecilia</creatorcontrib><creatorcontrib>Gustafsson, Mika</creatorcontrib><creatorcontrib>Olofsson, Charlotta S.</creatorcontrib><creatorcontrib>Cedersund, Gunnar</creatorcontrib><creatorcontrib>Nyman, Elin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Högskolan i Skövde full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Högskolan i Skövde</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Örebro universitet full text</collection><collection>SWEPUB Örebro universitet</collection><collection>SWEPUB Göteborgs universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPJ systems biology and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lövfors, William</au><au>Magnusson, Rasmus</au><au>Jönsson, Cecilia</au><au>Gustafsson, Mika</au><au>Olofsson, Charlotta S.</au><au>Cedersund, Gunnar</au><au>Nyman, Elin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive mechanistic model of adipocyte signaling with layers of confidence</atitle><jtitle>NPJ systems biology and applications</jtitle><stitle>npj Syst Biol Appl</stitle><addtitle>NPJ Syst Biol Appl</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>24</spage><epage>24</epage><pages>24-24</pages><artnum>24</artnum><issn>2056-7189</issn><eissn>2056-7189</eissn><abstract>Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37286693</pmid><doi>10.1038/s41540-023-00282-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9395-6025</orcidid><orcidid>https://orcid.org/0000-0002-0048-4063</orcidid><orcidid>https://orcid.org/0000-0002-9058-7049</orcidid><orcidid>https://orcid.org/0000-0002-4261-0291</orcidid><orcidid>https://orcid.org/0000-0003-0981-0264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-7189
ispartof NPJ systems biology and applications, 2023-06, Vol.9 (1), p.24-24, Article 24
issn 2056-7189
2056-7189
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cc9cf96f241a478db28a7eef0063ae70
source PubMed Central Free; Publicly Available Content Database; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/553/2695
631/553/2701
631/553/2712
Adipocytes
Adipocytes - metabolism
Adiponectin
Bioinformatics
Bioinformatics (Computational Biology)
Bioinformatik
Bioinformatik (beräkningsbiologi)
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - metabolism
Humans
Insulin
Life Sciences
Lipolysis
Lipolysis - physiology
Mathematical models
Protein interaction
Signal Transduction - physiology
Systems Biology
title A comprehensive mechanistic model of adipocyte signaling with layers of confidence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20mechanistic%20model%20of%20adipocyte%20signaling%20with%20layers%20of%20confidence&rft.jtitle=NPJ%20systems%20biology%20and%20applications&rft.au=L%C3%B6vfors,%20William&rft.date=2023-06-07&rft.volume=9&rft.issue=1&rft.spage=24&rft.epage=24&rft.pages=24-24&rft.artnum=24&rft.issn=2056-7189&rft.eissn=2056-7189&rft_id=info:doi/10.1038/s41540-023-00282-9&rft_dat=%3Cproquest_doaj_%3E2823992085%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-54ecc417a114af4d7321d7cf85bb37eeb839712af3567fef2144375027ce207b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826828305&rft_id=info:pmid/37286693&rfr_iscdi=true