Loading…
A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends
On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.18261-18280 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3 |
container_end_page | 18280 |
container_issue | |
container_start_page | 18261 |
container_title | IEEE access |
container_volume | 11 |
creator | Rahma, Alaa Azab, Shahira Shaaban Mohammed, Ammar |
description | On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets. |
doi_str_mv | 10.1109/ACCESS.2023.3247427 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049545</ieee_id><doaj_id>oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a</doaj_id><sourcerecordid>2780983100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</originalsourceid><addsrcrecordid>eNpNUU1r4zAQNWUXGtr-gvYg2OsmlSVZH3sz3qYtFPaQ7q0gJtIocUisrGQX8u_r1mXpXGZ4vPdmhlcU1yVdlCU1t3XT3K1WC0YZX3AmlGDqrJixUpo5r7j89mU-L65y3tGx9AhVala81KSJh2PCLXa5fUWyGtIrnkjsSJ1g3TqyguQgH8hv7NH1bex-kfp4TBHcFvNP0mxhv8dug5lA58ly6IeE5Dlh5_Nl8T3APuPVZ78o_i7vnpuH-dOf-8emfpo7QU0_D1yAoEw67RWA5lxyDywEDdxpZQyjUhqK0mtKUYNmayOlklWgrAxMrvlF8Tj5-gg7e0ztAdLJRmjtBxDTxkLqW7dH65zjgRkdDKDwTGgXUJVeBeG5FwpGrx-T1_jivwFzb3dxSN14vmVKU6N5SenI4hPLpZhzwvB_a0nteyp2SsW-p2I_UxlVN5OqRcQvCipMJSr-Bi5Nh94</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780983100</pqid></control><display><type>article</type><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><source>IEEE Open Access Journals</source><creator>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</creator><creatorcontrib>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</creatorcontrib><description>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3247427</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arabic sarcasm detection ; Artificial intelligence ; Artificial intelligence (AI) ; Data mining ; Datasets ; Deep learning ; deep learning (DL) ; Feature extraction ; Impact analysis ; Linguistics ; Literature reviews ; Machine learning ; machine learning (ML) ; Natural language processing ; natural language processing (NLP) ; Sentiment analysis ; sentiment analysis (SA) ; Social networking (online)</subject><ispartof>IEEE access, 2023, Vol.11, p.18261-18280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</citedby><cites>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</cites><orcidid>0000-0001-6844-9451 ; 0000-0001-6903-272X ; 0000-0001-9902-7657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rahma, Alaa</creatorcontrib><creatorcontrib>Azab, Shahira Shaaban</creatorcontrib><creatorcontrib>Mohammed, Ammar</creatorcontrib><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><title>IEEE access</title><addtitle>Access</addtitle><description>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</description><subject>Arabic sarcasm detection</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>Linguistics</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Natural language processing</subject><subject>natural language processing (NLP)</subject><subject>Sentiment analysis</subject><subject>sentiment analysis (SA)</subject><subject>Social networking (online)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r4zAQNWUXGtr-gvYg2OsmlSVZH3sz3qYtFPaQ7q0gJtIocUisrGQX8u_r1mXpXGZ4vPdmhlcU1yVdlCU1t3XT3K1WC0YZX3AmlGDqrJixUpo5r7j89mU-L65y3tGx9AhVala81KSJh2PCLXa5fUWyGtIrnkjsSJ1g3TqyguQgH8hv7NH1bex-kfp4TBHcFvNP0mxhv8dug5lA58ly6IeE5Dlh5_Nl8T3APuPVZ78o_i7vnpuH-dOf-8emfpo7QU0_D1yAoEw67RWA5lxyDywEDdxpZQyjUhqK0mtKUYNmayOlklWgrAxMrvlF8Tj5-gg7e0ztAdLJRmjtBxDTxkLqW7dH65zjgRkdDKDwTGgXUJVeBeG5FwpGrx-T1_jivwFzb3dxSN14vmVKU6N5SenI4hPLpZhzwvB_a0nteyp2SsW-p2I_UxlVN5OqRcQvCipMJSr-Bi5Nh94</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rahma, Alaa</creator><creator>Azab, Shahira Shaaban</creator><creator>Mohammed, Ammar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6844-9451</orcidid><orcidid>https://orcid.org/0000-0001-6903-272X</orcidid><orcidid>https://orcid.org/0000-0001-9902-7657</orcidid></search><sort><creationdate>2023</creationdate><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><author>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arabic sarcasm detection</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>Linguistics</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Natural language processing</topic><topic>natural language processing (NLP)</topic><topic>Sentiment analysis</topic><topic>sentiment analysis (SA)</topic><topic>Social networking (online)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahma, Alaa</creatorcontrib><creatorcontrib>Azab, Shahira Shaaban</creatorcontrib><creatorcontrib>Mohammed, Ammar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahma, Alaa</au><au>Azab, Shahira Shaaban</au><au>Mohammed, Ammar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>18261</spage><epage>18280</epage><pages>18261-18280</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3247427</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6844-9451</orcidid><orcidid>https://orcid.org/0000-0001-6903-272X</orcidid><orcidid>https://orcid.org/0000-0001-9902-7657</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.18261-18280 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a |
source | IEEE Open Access Journals |
subjects | Arabic sarcasm detection Artificial intelligence Artificial intelligence (AI) Data mining Datasets Deep learning deep learning (DL) Feature extraction Impact analysis Linguistics Literature reviews Machine learning machine learning (ML) Natural language processing natural language processing (NLP) Sentiment analysis sentiment analysis (SA) Social networking (online) |
title | A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Survey%20on%20Arabic%20Sarcasm%20Detection:%20Approaches,%20Challenges%20and%20Future%20Trends&rft.jtitle=IEEE%20access&rft.au=Rahma,%20Alaa&rft.date=2023&rft.volume=11&rft.spage=18261&rft.epage=18280&rft.pages=18261-18280&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3247427&rft_dat=%3Cproquest_doaj_%3E2780983100%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780983100&rft_id=info:pmid/&rft_ieee_id=10049545&rfr_iscdi=true |