Loading…

A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends

On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.18261-18280
Main Authors: Rahma, Alaa, Azab, Shahira Shaaban, Mohammed, Ammar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3
cites cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3
container_end_page 18280
container_issue
container_start_page 18261
container_title IEEE access
container_volume 11
creator Rahma, Alaa
Azab, Shahira Shaaban
Mohammed, Ammar
description On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.
doi_str_mv 10.1109/ACCESS.2023.3247427
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049545</ieee_id><doaj_id>oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a</doaj_id><sourcerecordid>2780983100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</originalsourceid><addsrcrecordid>eNpNUU1r4zAQNWUXGtr-gvYg2OsmlSVZH3sz3qYtFPaQ7q0gJtIocUisrGQX8u_r1mXpXGZ4vPdmhlcU1yVdlCU1t3XT3K1WC0YZX3AmlGDqrJixUpo5r7j89mU-L65y3tGx9AhVala81KSJh2PCLXa5fUWyGtIrnkjsSJ1g3TqyguQgH8hv7NH1bex-kfp4TBHcFvNP0mxhv8dug5lA58ly6IeE5Dlh5_Nl8T3APuPVZ78o_i7vnpuH-dOf-8emfpo7QU0_D1yAoEw67RWA5lxyDywEDdxpZQyjUhqK0mtKUYNmayOlklWgrAxMrvlF8Tj5-gg7e0ztAdLJRmjtBxDTxkLqW7dH65zjgRkdDKDwTGgXUJVeBeG5FwpGrx-T1_jivwFzb3dxSN14vmVKU6N5SenI4hPLpZhzwvB_a0nteyp2SsW-p2I_UxlVN5OqRcQvCipMJSr-Bi5Nh94</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780983100</pqid></control><display><type>article</type><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><source>IEEE Open Access Journals</source><creator>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</creator><creatorcontrib>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</creatorcontrib><description>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3247427</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arabic sarcasm detection ; Artificial intelligence ; Artificial intelligence (AI) ; Data mining ; Datasets ; Deep learning ; deep learning (DL) ; Feature extraction ; Impact analysis ; Linguistics ; Literature reviews ; Machine learning ; machine learning (ML) ; Natural language processing ; natural language processing (NLP) ; Sentiment analysis ; sentiment analysis (SA) ; Social networking (online)</subject><ispartof>IEEE access, 2023, Vol.11, p.18261-18280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</citedby><cites>FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</cites><orcidid>0000-0001-6844-9451 ; 0000-0001-6903-272X ; 0000-0001-9902-7657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rahma, Alaa</creatorcontrib><creatorcontrib>Azab, Shahira Shaaban</creatorcontrib><creatorcontrib>Mohammed, Ammar</creatorcontrib><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><title>IEEE access</title><addtitle>Access</addtitle><description>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</description><subject>Arabic sarcasm detection</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>Linguistics</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Natural language processing</subject><subject>natural language processing (NLP)</subject><subject>Sentiment analysis</subject><subject>sentiment analysis (SA)</subject><subject>Social networking (online)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r4zAQNWUXGtr-gvYg2OsmlSVZH3sz3qYtFPaQ7q0gJtIocUisrGQX8u_r1mXpXGZ4vPdmhlcU1yVdlCU1t3XT3K1WC0YZX3AmlGDqrJixUpo5r7j89mU-L65y3tGx9AhVala81KSJh2PCLXa5fUWyGtIrnkjsSJ1g3TqyguQgH8hv7NH1bex-kfp4TBHcFvNP0mxhv8dug5lA58ly6IeE5Dlh5_Nl8T3APuPVZ78o_i7vnpuH-dOf-8emfpo7QU0_D1yAoEw67RWA5lxyDywEDdxpZQyjUhqK0mtKUYNmayOlklWgrAxMrvlF8Tj5-gg7e0ztAdLJRmjtBxDTxkLqW7dH65zjgRkdDKDwTGgXUJVeBeG5FwpGrx-T1_jivwFzb3dxSN14vmVKU6N5SenI4hPLpZhzwvB_a0nteyp2SsW-p2I_UxlVN5OqRcQvCipMJSr-Bi5Nh94</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rahma, Alaa</creator><creator>Azab, Shahira Shaaban</creator><creator>Mohammed, Ammar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6844-9451</orcidid><orcidid>https://orcid.org/0000-0001-6903-272X</orcidid><orcidid>https://orcid.org/0000-0001-9902-7657</orcidid></search><sort><creationdate>2023</creationdate><title>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</title><author>Rahma, Alaa ; Azab, Shahira Shaaban ; Mohammed, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arabic sarcasm detection</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>Linguistics</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Natural language processing</topic><topic>natural language processing (NLP)</topic><topic>Sentiment analysis</topic><topic>sentiment analysis (SA)</topic><topic>Social networking (online)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahma, Alaa</creatorcontrib><creatorcontrib>Azab, Shahira Shaaban</creatorcontrib><creatorcontrib>Mohammed, Ammar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahma, Alaa</au><au>Azab, Shahira Shaaban</au><au>Mohammed, Ammar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>18261</spage><epage>18280</epage><pages>18261-18280</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3247427</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6844-9451</orcidid><orcidid>https://orcid.org/0000-0001-6903-272X</orcidid><orcidid>https://orcid.org/0000-0001-9902-7657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.18261-18280
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ccc3f298f9ae4d248cfe71d7f4d3d47a
source IEEE Open Access Journals
subjects Arabic sarcasm detection
Artificial intelligence
Artificial intelligence (AI)
Data mining
Datasets
Deep learning
deep learning (DL)
Feature extraction
Impact analysis
Linguistics
Literature reviews
Machine learning
machine learning (ML)
Natural language processing
natural language processing (NLP)
Sentiment analysis
sentiment analysis (SA)
Social networking (online)
title A Comprehensive Survey on Arabic Sarcasm Detection: Approaches, Challenges and Future Trends
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Survey%20on%20Arabic%20Sarcasm%20Detection:%20Approaches,%20Challenges%20and%20Future%20Trends&rft.jtitle=IEEE%20access&rft.au=Rahma,%20Alaa&rft.date=2023&rft.volume=11&rft.spage=18261&rft.epage=18280&rft.pages=18261-18280&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3247427&rft_dat=%3Cproquest_doaj_%3E2780983100%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f34a4026c8d7aa83363da2ff8a3c8799206690e6d800e8a82b966765f021f26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780983100&rft_id=info:pmid/&rft_ieee_id=10049545&rfr_iscdi=true