Loading…

CONTEXTUAL IMAGE CLASSIFICATION APPROACH FOR MONITORING OF AGRICULTURAL LAND COVER BY SUPPORT VECTOR MACHINES AND MARKOV RANDOM FIELDS

The main idea of this paper is to integrate the non-contextual support vector machines (SVM) classifiers with Markov random fields (MRF) approach to develop a contextual framework for monitoring of agricultural land cover. To this end, the SVM and MRF approaches were integrated to exploit both spect...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2013-09, Vol.XL-1/W3, p.441-446
Main Authors: Vahidi, H., Monabbati, E.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main idea of this paper is to integrate the non-contextual support vector machines (SVM) classifiers with Markov random fields (MRF) approach to develop a contextual framework for monitoring of agricultural land cover. To this end, the SVM and MRF approaches were integrated to exploit both spectral and spatial contextual information in the image for more accurate classification of remote sensing data from an agricultural region in Biddinghuizen, the Netherlands. Comparative analysis of this study clearly demonstrated that the proposed contextual method based on SVM-MRF models generates a higher average accuracy, overall accuracy and Kappa coefficient compared with non-contextual SVM method. Since the spatial information is considered in the proposed method, this study indicates that a neater, more homogonous and speckle-free results could be generated by the SVM-MRF approach.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprsarchives-XL-1-W3-441-2013