Loading…

A Molecularly Imprinted Polymer-Disposable Pipette Tip Extraction-Capillary Electrophoresis (MISPE-DPX-CE) Method for the Preconcentration and Determination of Scopolamine in Synthetic Urine Samples

Alcoholic beverages contaminated with scopolamine (SCP) are often employed for criminal purposes due to their sedative effect. The determination of the residual levels of SCP in body fluids (e.g., urine) can help to track possible victims of induced ingestions. Biological sample analysis usually req...

Full description

Saved in:
Bibliographic Details
Published in:Chemosensors 2022-09, Vol.10 (10), p.387
Main Authors: Silva, Weida Rodrigues, Ribeiro, Michelle M. A. C, Richter, Eduardo Mathias, Batista, Alex D, da Silveira Petruci, João Flávio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alcoholic beverages contaminated with scopolamine (SCP) are often employed for criminal purposes due to their sedative effect. The determination of the residual levels of SCP in body fluids (e.g., urine) can help to track possible victims of induced ingestions. Biological sample analysis usually requires a preconcentration step to enhance their detectability and to provide sample clean-up. Molecularly imprinted polymers (MIPs) in lieu of conventional solid sorbents represent an enhancement of selectivity, due to their specific recognition sites. Additionally, the adaptation of the solid-phase extraction (SPE) cartridge into a disposable pipette tip extraction (DPX) contributes to the miniaturization of the sample preparation step. Herein, an analytical method for the determination of SCP in synthetic urine samples via the integration of molecularly imprinted solid-phase extraction (MISPE) with DPX as a preconcentration step prior to capillary electrophoresis analysis (also known as MISPE-DPX-CE) is presented. The extraction and elution steps were optimized using a factorial design. Using the optimized conditions, a preconcentration factor of 20 was obtained, leading to a working range of 0.5–6 µM with LOD of 0.04 µM and repeatability of 6.4% (n = 7) and adequate recovery values (84 and 101%) The proposed MISPE-DPX-CE approach was successfully applied to selective extraction, preconcentration, and determination of SCP in synthetic urine samples.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors10100387