Loading…

O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans

Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosa...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2024-02, Vol.13
Main Authors: Yadav, Dilip Kumar, Chang, Andrew C, Grooms, Noa W F, Chung, Samuel H, Gabel, Christopher V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 13
creator Yadav, Dilip Kumar
Chang, Andrew C
Grooms, Noa W F
Chung, Samuel H
Gabel, Christopher V
description Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase ( ) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in , we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.
doi_str_mv 10.7554/eLife.86478
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781892536</galeid><doaj_id>oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700</doaj_id><sourcerecordid>A781892536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</originalsourceid><addsrcrecordid>eNptkt2L1DAUxYso7rLuk-9S8EWRjkmbpMnjMOg6MLjgB_gW0vSmk6FN1iQF_e9NZ9bVEZOHJJffPeEeTlE8x2jVUkrews4aWHFGWv6ouKwRRRXi5Nvjv-4XxXWMB5RXSzjH4mlx0fCmITVDl8X-troZ9ce1LqMdnBqtG0rrdAAVIZYO5uBdGWAAB0Elmx9pH_w87EvvoNIqdLk0QVKdH22ccm-5UeB82Kuut8nGEkYYlIvPiidGjRGu78-r4uv7d182H6rd7c12s95VmrQiVYRQMB1SnFBmBGFdTRvBBIHeGEA9FgxjSqCmrWECMKt5yygyqkc10g3qm6tie9LtvTrIu2AnFX5Kr6w8FnwYpArJ6hGk7jHiHaYcaUO4aAVDLMuAIh3rW4Sy1quT1l3w32eISU42ahhH5cDPUdaiJkIIVLOMvvwHPfg5ZEMXajFbIE7_UIPK_1tnfApKL6Jy3XLMRZ520Vr9h8q7h8nq7LuxuX7W8PqsITMJfqRBzTHK7edP5-ybE6uDjzGAefAII7lESh4jJY-RyvSL-7HmboL-gf0doOYX8NTDcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933429085</pqid></control><display><type>article</type><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</creator><creatorcontrib>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</creatorcontrib><description>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase ( ) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in , we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.86478</identifier><identifier>PMID: 38334260</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animals ; Axotomy ; Caenorhabditis elegans ; Carbon ; cell metabolism ; Gene expression ; Genetic transcription ; Glycolysis ; Kinases ; Lasers ; Metabolic pathways ; Metabolism ; Metabolites ; Methionine ; Mutation ; N-Acetylglucosamine ; Nematodes ; neuron regeneration ; Neurons ; one-carbon metabolism ; Physiological aspects ; Post-translation ; Post-translational modification ; Regeneration ; RNA ; RNA sequencing ; Sensors ; Signal transduction ; Vitamin B12 ; Worms</subject><ispartof>eLife, 2024-02, Vol.13</ispartof><rights>2024, Yadav et al.</rights><rights>COPYRIGHT 2024 eLife Science Publications, Ltd.</rights><rights>2024, Yadav et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</cites><orcidid>0000-0002-0232-7387 ; 0000-0002-2763-3938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933429085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933429085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38334260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Dilip Kumar</creatorcontrib><creatorcontrib>Chang, Andrew C</creatorcontrib><creatorcontrib>Grooms, Noa W F</creatorcontrib><creatorcontrib>Chung, Samuel H</creatorcontrib><creatorcontrib>Gabel, Christopher V</creatorcontrib><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><title>eLife</title><addtitle>Elife</addtitle><description>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase ( ) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in , we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</description><subject>Animals</subject><subject>Axotomy</subject><subject>Caenorhabditis elegans</subject><subject>Carbon</subject><subject>cell metabolism</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Glycolysis</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Mutation</subject><subject>N-Acetylglucosamine</subject><subject>Nematodes</subject><subject>neuron regeneration</subject><subject>Neurons</subject><subject>one-carbon metabolism</subject><subject>Physiological aspects</subject><subject>Post-translation</subject><subject>Post-translational modification</subject><subject>Regeneration</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Vitamin B12</subject><subject>Worms</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt2L1DAUxYso7rLuk-9S8EWRjkmbpMnjMOg6MLjgB_gW0vSmk6FN1iQF_e9NZ9bVEZOHJJffPeEeTlE8x2jVUkrews4aWHFGWv6ouKwRRRXi5Nvjv-4XxXWMB5RXSzjH4mlx0fCmITVDl8X-troZ9ce1LqMdnBqtG0rrdAAVIZYO5uBdGWAAB0Elmx9pH_w87EvvoNIqdLk0QVKdH22ccm-5UeB82Kuut8nGEkYYlIvPiidGjRGu78-r4uv7d182H6rd7c12s95VmrQiVYRQMB1SnFBmBGFdTRvBBIHeGEA9FgxjSqCmrWECMKt5yygyqkc10g3qm6tie9LtvTrIu2AnFX5Kr6w8FnwYpArJ6hGk7jHiHaYcaUO4aAVDLMuAIh3rW4Sy1quT1l3w32eISU42ahhH5cDPUdaiJkIIVLOMvvwHPfg5ZEMXajFbIE7_UIPK_1tnfApKL6Jy3XLMRZ520Vr9h8q7h8nq7LuxuX7W8PqsITMJfqRBzTHK7edP5-ybE6uDjzGAefAII7lESh4jJY-RyvSL-7HmboL-gf0doOYX8NTDcQ</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Yadav, Dilip Kumar</creator><creator>Chang, Andrew C</creator><creator>Grooms, Noa W F</creator><creator>Chung, Samuel H</creator><creator>Gabel, Christopher V</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0232-7387</orcidid><orcidid>https://orcid.org/0000-0002-2763-3938</orcidid></search><sort><creationdate>20240209</creationdate><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><author>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Axotomy</topic><topic>Caenorhabditis elegans</topic><topic>Carbon</topic><topic>cell metabolism</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Glycolysis</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Mutation</topic><topic>N-Acetylglucosamine</topic><topic>Nematodes</topic><topic>neuron regeneration</topic><topic>Neurons</topic><topic>one-carbon metabolism</topic><topic>Physiological aspects</topic><topic>Post-translation</topic><topic>Post-translational modification</topic><topic>Regeneration</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Vitamin B12</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Dilip Kumar</creatorcontrib><creatorcontrib>Chang, Andrew C</creatorcontrib><creatorcontrib>Grooms, Noa W F</creatorcontrib><creatorcontrib>Chung, Samuel H</creatorcontrib><creatorcontrib>Gabel, Christopher V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Dilip Kumar</au><au>Chang, Andrew C</au><au>Grooms, Noa W F</au><au>Chung, Samuel H</au><au>Gabel, Christopher V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>13</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase ( ) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in , we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>38334260</pmid><doi>10.7554/eLife.86478</doi><orcidid>https://orcid.org/0000-0002-0232-7387</orcidid><orcidid>https://orcid.org/0000-0002-2763-3938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2024-02, Vol.13
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700
source Publicly Available Content (ProQuest); PubMed Central
subjects Animals
Axotomy
Caenorhabditis elegans
Carbon
cell metabolism
Gene expression
Genetic transcription
Glycolysis
Kinases
Lasers
Metabolic pathways
Metabolism
Metabolites
Methionine
Mutation
N-Acetylglucosamine
Nematodes
neuron regeneration
Neurons
one-carbon metabolism
Physiological aspects
Post-translation
Post-translational modification
Regeneration
RNA
RNA sequencing
Sensors
Signal transduction
Vitamin B12
Worms
title O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-GlcNAc%20signaling%20increases%20neuron%20regeneration%20through%20one-carbon%20metabolism%20in%20Caenorhabditis%20elegans&rft.jtitle=eLife&rft.au=Yadav,%20Dilip%20Kumar&rft.date=2024-02-09&rft.volume=13&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.86478&rft_dat=%3Cgale_doaj_%3EA781892536%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933429085&rft_id=info:pmid/38334260&rft_galeid=A781892536&rfr_iscdi=true