Loading…
O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans
Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosa...
Saved in:
Published in: | eLife 2024-02, Vol.13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 13 |
creator | Yadav, Dilip Kumar Chang, Andrew C Grooms, Noa W F Chung, Samuel H Gabel, Christopher V |
description | Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (
) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in
, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of
mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the
mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the
mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in
animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury. |
doi_str_mv | 10.7554/eLife.86478 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781892536</galeid><doaj_id>oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700</doaj_id><sourcerecordid>A781892536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</originalsourceid><addsrcrecordid>eNptkt2L1DAUxYso7rLuk-9S8EWRjkmbpMnjMOg6MLjgB_gW0vSmk6FN1iQF_e9NZ9bVEZOHJJffPeEeTlE8x2jVUkrews4aWHFGWv6ouKwRRRXi5Nvjv-4XxXWMB5RXSzjH4mlx0fCmITVDl8X-troZ9ce1LqMdnBqtG0rrdAAVIZYO5uBdGWAAB0Elmx9pH_w87EvvoNIqdLk0QVKdH22ccm-5UeB82Kuut8nGEkYYlIvPiidGjRGu78-r4uv7d182H6rd7c12s95VmrQiVYRQMB1SnFBmBGFdTRvBBIHeGEA9FgxjSqCmrWECMKt5yygyqkc10g3qm6tie9LtvTrIu2AnFX5Kr6w8FnwYpArJ6hGk7jHiHaYcaUO4aAVDLMuAIh3rW4Sy1quT1l3w32eISU42ahhH5cDPUdaiJkIIVLOMvvwHPfg5ZEMXajFbIE7_UIPK_1tnfApKL6Jy3XLMRZ520Vr9h8q7h8nq7LuxuX7W8PqsITMJfqRBzTHK7edP5-ybE6uDjzGAefAII7lESh4jJY-RyvSL-7HmboL-gf0doOYX8NTDcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933429085</pqid></control><display><type>article</type><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</creator><creatorcontrib>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</creatorcontrib><description>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (
) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in
, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of
mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the
mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the
mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in
animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.86478</identifier><identifier>PMID: 38334260</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animals ; Axotomy ; Caenorhabditis elegans ; Carbon ; cell metabolism ; Gene expression ; Genetic transcription ; Glycolysis ; Kinases ; Lasers ; Metabolic pathways ; Metabolism ; Metabolites ; Methionine ; Mutation ; N-Acetylglucosamine ; Nematodes ; neuron regeneration ; Neurons ; one-carbon metabolism ; Physiological aspects ; Post-translation ; Post-translational modification ; Regeneration ; RNA ; RNA sequencing ; Sensors ; Signal transduction ; Vitamin B12 ; Worms</subject><ispartof>eLife, 2024-02, Vol.13</ispartof><rights>2024, Yadav et al.</rights><rights>COPYRIGHT 2024 eLife Science Publications, Ltd.</rights><rights>2024, Yadav et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</cites><orcidid>0000-0002-0232-7387 ; 0000-0002-2763-3938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933429085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933429085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38334260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Dilip Kumar</creatorcontrib><creatorcontrib>Chang, Andrew C</creatorcontrib><creatorcontrib>Grooms, Noa W F</creatorcontrib><creatorcontrib>Chung, Samuel H</creatorcontrib><creatorcontrib>Gabel, Christopher V</creatorcontrib><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><title>eLife</title><addtitle>Elife</addtitle><description>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (
) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in
, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of
mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the
mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the
mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in
animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</description><subject>Animals</subject><subject>Axotomy</subject><subject>Caenorhabditis elegans</subject><subject>Carbon</subject><subject>cell metabolism</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Glycolysis</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Mutation</subject><subject>N-Acetylglucosamine</subject><subject>Nematodes</subject><subject>neuron regeneration</subject><subject>Neurons</subject><subject>one-carbon metabolism</subject><subject>Physiological aspects</subject><subject>Post-translation</subject><subject>Post-translational modification</subject><subject>Regeneration</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Vitamin B12</subject><subject>Worms</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt2L1DAUxYso7rLuk-9S8EWRjkmbpMnjMOg6MLjgB_gW0vSmk6FN1iQF_e9NZ9bVEZOHJJffPeEeTlE8x2jVUkrews4aWHFGWv6ouKwRRRXi5Nvjv-4XxXWMB5RXSzjH4mlx0fCmITVDl8X-troZ9ce1LqMdnBqtG0rrdAAVIZYO5uBdGWAAB0Elmx9pH_w87EvvoNIqdLk0QVKdH22ccm-5UeB82Kuut8nGEkYYlIvPiidGjRGu78-r4uv7d182H6rd7c12s95VmrQiVYRQMB1SnFBmBGFdTRvBBIHeGEA9FgxjSqCmrWECMKt5yygyqkc10g3qm6tie9LtvTrIu2AnFX5Kr6w8FnwYpArJ6hGk7jHiHaYcaUO4aAVDLMuAIh3rW4Sy1quT1l3w32eISU42ahhH5cDPUdaiJkIIVLOMvvwHPfg5ZEMXajFbIE7_UIPK_1tnfApKL6Jy3XLMRZ520Vr9h8q7h8nq7LuxuX7W8PqsITMJfqRBzTHK7edP5-ybE6uDjzGAefAII7lESh4jJY-RyvSL-7HmboL-gf0doOYX8NTDcQ</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Yadav, Dilip Kumar</creator><creator>Chang, Andrew C</creator><creator>Grooms, Noa W F</creator><creator>Chung, Samuel H</creator><creator>Gabel, Christopher V</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0232-7387</orcidid><orcidid>https://orcid.org/0000-0002-2763-3938</orcidid></search><sort><creationdate>20240209</creationdate><title>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</title><author>Yadav, Dilip Kumar ; Chang, Andrew C ; Grooms, Noa W F ; Chung, Samuel H ; Gabel, Christopher V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Axotomy</topic><topic>Caenorhabditis elegans</topic><topic>Carbon</topic><topic>cell metabolism</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Glycolysis</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Mutation</topic><topic>N-Acetylglucosamine</topic><topic>Nematodes</topic><topic>neuron regeneration</topic><topic>Neurons</topic><topic>one-carbon metabolism</topic><topic>Physiological aspects</topic><topic>Post-translation</topic><topic>Post-translational modification</topic><topic>Regeneration</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Vitamin B12</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Dilip Kumar</creatorcontrib><creatorcontrib>Chang, Andrew C</creatorcontrib><creatorcontrib>Grooms, Noa W F</creatorcontrib><creatorcontrib>Chung, Samuel H</creatorcontrib><creatorcontrib>Gabel, Christopher V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Dilip Kumar</au><au>Chang, Andrew C</au><au>Grooms, Noa W F</au><au>Chung, Samuel H</au><au>Gabel, Christopher V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>13</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (
) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in
, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of
mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the
mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the
mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in
animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>38334260</pmid><doi>10.7554/eLife.86478</doi><orcidid>https://orcid.org/0000-0002-0232-7387</orcidid><orcidid>https://orcid.org/0000-0002-2763-3938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2024-02, Vol.13 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd108b1580cf48979606020ea4b6d700 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Animals Axotomy Caenorhabditis elegans Carbon cell metabolism Gene expression Genetic transcription Glycolysis Kinases Lasers Metabolic pathways Metabolism Metabolites Methionine Mutation N-Acetylglucosamine Nematodes neuron regeneration Neurons one-carbon metabolism Physiological aspects Post-translation Post-translational modification Regeneration RNA RNA sequencing Sensors Signal transduction Vitamin B12 Worms |
title | O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-GlcNAc%20signaling%20increases%20neuron%20regeneration%20through%20one-carbon%20metabolism%20in%20Caenorhabditis%20elegans&rft.jtitle=eLife&rft.au=Yadav,%20Dilip%20Kumar&rft.date=2024-02-09&rft.volume=13&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.86478&rft_dat=%3Cgale_doaj_%3EA781892536%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-445efb0a8456f946b2539694edffe0d1961154e257f69e16287650fad020c30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933429085&rft_id=info:pmid/38334260&rft_galeid=A781892536&rfr_iscdi=true |