Loading…
Stable and quadratic-optimal parallel-distributed-compensation controller design for time-varying Takagi–Sugeno fuzzy model System: A complementary computational approach
A complementary computational approach is proposed for the time-varying Takagi–Sugeno fuzzy model system (TVTSFMS). The proposed approach integrates orthogonal-functional approach (OFA), hybrid Taguchi genetic algorithm (HTGA), and a stabilizability condition (SC) for use in designing stable and qua...
Saved in:
Published in: | Measurement and control (London) 2022-03, Vol.55 (3-4), p.119-125 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A complementary computational approach is proposed for the time-varying Takagi–Sugeno fuzzy model system (TVTSFMS). The proposed approach integrates orthogonal-functional approach (OFA), hybrid Taguchi genetic algorithm (HTGA), and a stabilizability condition (SC) for use in designing stable and quadratic-optimal parallel-distributed-compensation (SQOPDC) controllers for optimal control problems. First, the SC was set according to linear matrix inequalities (LMIs). Next, OFA was used to derive an algorithm that only required algebraic computation to solve the TVTSFMS. Finally, The HTGA could be used to search the SQOPDC controller for the TVTSFMS. The SQOPDC controller obtained by the proposed complementary computational approach was evaluated in a case study of a vibratory pendulum design; the successful design verified the usability of the proposed hybrid intelligent computing method. |
---|---|
ISSN: | 0020-2940 2051-8730 |
DOI: | 10.1177/00202940221083583 |