Loading…

A Simple Model for Elastic-Plastic Contact of Granular Geomaterials

We propose a simple elastic-plastic contact model by considering the interaction of two spheres in the normal direction, for use in discrete element method (DEM) simulations of geomaterials. This model has been developed by using the finite element method (FEM) and nonlinear fitting methods, in the...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2018-01, Vol.2018 (2018), p.1-11
Main Authors: Huang, Yidan, Yang, Changwei, Li, Qimin, Wang, Jian, Zhou, Caizhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a simple elastic-plastic contact model by considering the interaction of two spheres in the normal direction, for use in discrete element method (DEM) simulations of geomaterials. This model has been developed by using the finite element method (FEM) and nonlinear fitting methods, in the form of power-law relation of the dimensionless normal force and displacement. Only four parameters are needed for each loading-unloading contact process between two spheres, which are relevant to material properties evaluated by FEM simulations. Within the given range of material properties, those four parameters can be quickly accessed by interpolating the data appended or by regression functions supplied. Instead of the Von Mises (V-M) yield criterion, the Drucker–Prager (D-P) criterion is used to describe the yield behavior of contacting spheres in this model. The D-P criterion takes the effects of confining pressure, the intermediate principal stress, and strain rate into consideration; thus, this model can be used for DEM simulation of geomaterials as well as other granular materials with pressure sensitivity.
ISSN:1687-8434
1687-8442
DOI:10.1155/2018/6783791