Loading…
Bayesian inference in numerical cognition: A tutorial using JASP
Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hes...
Saved in:
Published in: | Journal of numerical cognition 2020-09, Vol.6 (2), p.231-259 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3 |
container_end_page | 259 |
container_issue | 2 |
container_start_page | 231 |
container_title | Journal of numerical cognition |
container_volume | 6 |
creator | Faulkenberry, Thomas J. Ly, Alexander Wagenmakers, Eric-Jan |
description | Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis. |
doi_str_mv | 10.5964/jnc.v6i2.288 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</doaj_id><sourcerecordid>oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGp3PsA8gFNzm0ziylq8VAoK6jrk8qektBnJzAh9e2esiKtzOHC-xYfQJcHzSgl-vU1u_iUinVMpT9CEMsFKWQty-q-fo1nbbjHGRNFKSDpBt3fmAG00qYgpQIbkYGhF6veQozO7wjWbFLvYpJtiUXR91-Q4rH0b06Z4Xry9XqCzYHYtzH5zij4e7t-XT-X65XG1XKxLR5WUpeEgHcNeCIxDTQRYx51SQQUK1nIVwAVbVcF7MR5CbQi3KhAXaC1rDGyKVkeub8xWf-a4N_mgGxP1z9DkjTa5i24H2nnmGR1AFWF8xGCQ1FhPCBjOrBlYV0eWy03bZgh_PIL1KFMPMvUoUw8y2Tc09mjP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</creator><creatorcontrib>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</creatorcontrib><description>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</description><identifier>ISSN: 2363-8761</identifier><identifier>EISSN: 2363-8761</identifier><identifier>DOI: 10.5964/jnc.v6i2.288</identifier><language>eng</language><publisher>PsychOpen GOLD/ Leibniz Insitute for Psychology</publisher><subject>bayes factors ; bayesian inference ; jasp ; numerical cognition ; tutorial</subject><ispartof>Journal of numerical cognition, 2020-09, Vol.6 (2), p.231-259</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</citedby><cites>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Faulkenberry, Thomas J.</creatorcontrib><creatorcontrib>Ly, Alexander</creatorcontrib><creatorcontrib>Wagenmakers, Eric-Jan</creatorcontrib><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><title>Journal of numerical cognition</title><description>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</description><subject>bayes factors</subject><subject>bayesian inference</subject><subject>jasp</subject><subject>numerical cognition</subject><subject>tutorial</subject><issn>2363-8761</issn><issn>2363-8761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtKAzEYhYMoWGp3PsA8gFNzm0ziylq8VAoK6jrk8qektBnJzAh9e2esiKtzOHC-xYfQJcHzSgl-vU1u_iUinVMpT9CEMsFKWQty-q-fo1nbbjHGRNFKSDpBt3fmAG00qYgpQIbkYGhF6veQozO7wjWbFLvYpJtiUXR91-Q4rH0b06Z4Xry9XqCzYHYtzH5zij4e7t-XT-X65XG1XKxLR5WUpeEgHcNeCIxDTQRYx51SQQUK1nIVwAVbVcF7MR5CbQi3KhAXaC1rDGyKVkeub8xWf-a4N_mgGxP1z9DkjTa5i24H2nnmGR1AFWF8xGCQ1FhPCBjOrBlYV0eWy03bZgh_PIL1KFMPMvUoUw8y2Tc09mjP</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Faulkenberry, Thomas J.</creator><creator>Ly, Alexander</creator><creator>Wagenmakers, Eric-Jan</creator><general>PsychOpen GOLD/ Leibniz Insitute for Psychology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200909</creationdate><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><author>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bayes factors</topic><topic>bayesian inference</topic><topic>jasp</topic><topic>numerical cognition</topic><topic>tutorial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faulkenberry, Thomas J.</creatorcontrib><creatorcontrib>Ly, Alexander</creatorcontrib><creatorcontrib>Wagenmakers, Eric-Jan</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of numerical cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faulkenberry, Thomas J.</au><au>Ly, Alexander</au><au>Wagenmakers, Eric-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference in numerical cognition: A tutorial using JASP</atitle><jtitle>Journal of numerical cognition</jtitle><date>2020-09-09</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>231</spage><epage>259</epage><pages>231-259</pages><issn>2363-8761</issn><eissn>2363-8761</eissn><abstract>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</abstract><pub>PsychOpen GOLD/ Leibniz Insitute for Psychology</pub><doi>10.5964/jnc.v6i2.288</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-8761 |
ispartof | Journal of numerical cognition, 2020-09, Vol.6 (2), p.231-259 |
issn | 2363-8761 2363-8761 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba |
source | ROAD: Directory of Open Access Scholarly Resources |
subjects | bayes factors bayesian inference jasp numerical cognition tutorial |
title | Bayesian inference in numerical cognition: A tutorial using JASP |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20in%20numerical%20cognition:%20A%20tutorial%20using%20JASP&rft.jtitle=Journal%20of%20numerical%20cognition&rft.au=Faulkenberry,%20Thomas%20J.&rft.date=2020-09-09&rft.volume=6&rft.issue=2&rft.spage=231&rft.epage=259&rft.pages=231-259&rft.issn=2363-8761&rft.eissn=2363-8761&rft_id=info:doi/10.5964/jnc.v6i2.288&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |