Loading…

Bayesian inference in numerical cognition: A tutorial using JASP

Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of numerical cognition 2020-09, Vol.6 (2), p.231-259
Main Authors: Faulkenberry, Thomas J., Ly, Alexander, Wagenmakers, Eric-Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3
cites cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3
container_end_page 259
container_issue 2
container_start_page 231
container_title Journal of numerical cognition
container_volume 6
creator Faulkenberry, Thomas J.
Ly, Alexander
Wagenmakers, Eric-Jan
description Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.
doi_str_mv 10.5964/jnc.v6i2.288
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</doaj_id><sourcerecordid>oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGp3PsA8gFNzm0ziylq8VAoK6jrk8qektBnJzAh9e2esiKtzOHC-xYfQJcHzSgl-vU1u_iUinVMpT9CEMsFKWQty-q-fo1nbbjHGRNFKSDpBt3fmAG00qYgpQIbkYGhF6veQozO7wjWbFLvYpJtiUXR91-Q4rH0b06Z4Xry9XqCzYHYtzH5zij4e7t-XT-X65XG1XKxLR5WUpeEgHcNeCIxDTQRYx51SQQUK1nIVwAVbVcF7MR5CbQi3KhAXaC1rDGyKVkeub8xWf-a4N_mgGxP1z9DkjTa5i24H2nnmGR1AFWF8xGCQ1FhPCBjOrBlYV0eWy03bZgh_PIL1KFMPMvUoUw8y2Tc09mjP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</creator><creatorcontrib>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</creatorcontrib><description>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</description><identifier>ISSN: 2363-8761</identifier><identifier>EISSN: 2363-8761</identifier><identifier>DOI: 10.5964/jnc.v6i2.288</identifier><language>eng</language><publisher>PsychOpen GOLD/ Leibniz Insitute for Psychology</publisher><subject>bayes factors ; bayesian inference ; jasp ; numerical cognition ; tutorial</subject><ispartof>Journal of numerical cognition, 2020-09, Vol.6 (2), p.231-259</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</citedby><cites>FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Faulkenberry, Thomas J.</creatorcontrib><creatorcontrib>Ly, Alexander</creatorcontrib><creatorcontrib>Wagenmakers, Eric-Jan</creatorcontrib><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><title>Journal of numerical cognition</title><description>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</description><subject>bayes factors</subject><subject>bayesian inference</subject><subject>jasp</subject><subject>numerical cognition</subject><subject>tutorial</subject><issn>2363-8761</issn><issn>2363-8761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtKAzEYhYMoWGp3PsA8gFNzm0ziylq8VAoK6jrk8qektBnJzAh9e2esiKtzOHC-xYfQJcHzSgl-vU1u_iUinVMpT9CEMsFKWQty-q-fo1nbbjHGRNFKSDpBt3fmAG00qYgpQIbkYGhF6veQozO7wjWbFLvYpJtiUXR91-Q4rH0b06Z4Xry9XqCzYHYtzH5zij4e7t-XT-X65XG1XKxLR5WUpeEgHcNeCIxDTQRYx51SQQUK1nIVwAVbVcF7MR5CbQi3KhAXaC1rDGyKVkeub8xWf-a4N_mgGxP1z9DkjTa5i24H2nnmGR1AFWF8xGCQ1FhPCBjOrBlYV0eWy03bZgh_PIL1KFMPMvUoUw8y2Tc09mjP</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Faulkenberry, Thomas J.</creator><creator>Ly, Alexander</creator><creator>Wagenmakers, Eric-Jan</creator><general>PsychOpen GOLD/ Leibniz Insitute for Psychology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200909</creationdate><title>Bayesian inference in numerical cognition: A tutorial using JASP</title><author>Faulkenberry, Thomas J. ; Ly, Alexander ; Wagenmakers, Eric-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bayes factors</topic><topic>bayesian inference</topic><topic>jasp</topic><topic>numerical cognition</topic><topic>tutorial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faulkenberry, Thomas J.</creatorcontrib><creatorcontrib>Ly, Alexander</creatorcontrib><creatorcontrib>Wagenmakers, Eric-Jan</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of numerical cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faulkenberry, Thomas J.</au><au>Ly, Alexander</au><au>Wagenmakers, Eric-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference in numerical cognition: A tutorial using JASP</atitle><jtitle>Journal of numerical cognition</jtitle><date>2020-09-09</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>231</spage><epage>259</epage><pages>231-259</pages><issn>2363-8761</issn><eissn>2363-8761</eissn><abstract>Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis.</abstract><pub>PsychOpen GOLD/ Leibniz Insitute for Psychology</pub><doi>10.5964/jnc.v6i2.288</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2363-8761
ispartof Journal of numerical cognition, 2020-09, Vol.6 (2), p.231-259
issn 2363-8761
2363-8761
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba
source ROAD: Directory of Open Access Scholarly Resources
subjects bayes factors
bayesian inference
jasp
numerical cognition
tutorial
title Bayesian inference in numerical cognition: A tutorial using JASP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20in%20numerical%20cognition:%20A%20tutorial%20using%20JASP&rft.jtitle=Journal%20of%20numerical%20cognition&rft.au=Faulkenberry,%20Thomas%20J.&rft.date=2020-09-09&rft.volume=6&rft.issue=2&rft.spage=231&rft.epage=259&rft.pages=231-259&rft.issn=2363-8761&rft.eissn=2363-8761&rft_id=info:doi/10.5964/jnc.v6i2.288&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_cd3d32d6c513414b90e82abd11ea43ba%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2988-a4e8c30d6600f716ebc4c99f9f2ebb49fecfb55fdd6c298f7a14b9f1cf27870e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true