Loading…
A dataset composed of multiangular spectral libraries and auxiliary data at tree, leaf, needle, and bark level for three common European tree species
This article describes a dataset of multiangular scattering properties of small trees (height = 0.38–0.7 m) at visible, near-infrared, and shortwave-infrared wavelengths (350–2500 nm), and provides supporting auxiliary data that comprise leaf, needle, and bark spectra, and structural characteristics...
Saved in:
Published in: | Data in brief 2021-04, Vol.35, p.106820-106820, Article 106820 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article describes a dataset of multiangular scattering properties of small trees (height = 0.38–0.7 m) at visible, near-infrared, and shortwave-infrared wavelengths (350–2500 nm), and provides supporting auxiliary data that comprise leaf, needle, and bark spectra, and structural characteristics of the trees. Multiangular spectra were measured for 18 trees belonging to three common European tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst), and sessile oak (Quercus petraea (Matt.) Liebl.). The measurements were performed in 47 different view angles across a hemisphere, using a laboratory goniometer and a non-imaging spectrometer. Leaf and needle spectra were measured for each tree, using a non-imaging spectrometer coupled to an integrating sphere. Bark spectra were measured for one sample tree per species. In addition, leaf and needle fresh mass, surface area of leaves, needles, and woody parts, silhouette area, and spherically averaged silhouette to total area ratio (STAR) for each tree were measured or derived from the measurements. The data are useful for modeling the shortwave reflectance characteristics of small trees and potentially forests, and thus benefit climate modeling or interpretation of remote sensing data. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2021.106820 |