Loading…
Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites
In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-04, Vol.13 (9), p.1473 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1473 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Al-Hamry, Ammar Lu, Tianqi Chen, Haoran Adiraju, Anurag Nasraoui, Salem Brahem, Amina Bajuk-Bogdanović, Danica Weheabby, Saddam Pašti, Igor A Kanoun, Olfa |
description | In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties. Although direct laser scribing of GO-based humidity sensor shows an outstanding response (|Δ
|/|
| up to 638,800%), a lack of stability and repeatability has been observed. GO/MWNT-based humidity sensors are more conductive than GO sensors and relatively less sensitive (|Δ
|/|
| = 163,000%). However, they are more stable in harsh humid conditions, repeatable, and reproducible even after several years of shelf-life. In addition, they have fast response/recovery times of 10.7 s and 9.3 s and an ultra-fast response time of 61 ms when abrupt humidification/dehumidification is applied by respiration. All carbon-based sensors' overall properties confirm the advantage of introducing the GO/MWNT hybrid and laser direct writing to produce stable structures and sensors. |
doi_str_mv | 10.3390/nano13091473 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd51aab33ae4484bb8bdf8a58e13fc71</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749098759</galeid><doaj_id>oai_doaj_org_article_cd51aab33ae4484bb8bdf8a58e13fc71</doaj_id><sourcerecordid>A749098759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRCIVqU3zigSFw6k9efGPqGy0A9pRQ-lZ2vsTLZeJfZiJxX993jZUrXYB9szz-_NPE1VvafkhHNNTgOESDnRVLT8VXXISKsboTV9_ex-UB3nvCFlacqV5G-rA97StiVUHVbpdpgSNDcYsp_8PdYQuvoc8lRfzqPv_PRQ73Ix5forZOzqGOpvPqGb6lV5p-bGJW9L_CLB9g4D1te_fYenS0i2QH-U-qbZYq6XcdzGooH5XfWmhyHj8eN5VN2ef_-5vGxW1xdXy7NV4yRVUyMlCqaldEIzCq20XFF01jHKhe4XRErCFhaFBUc1bUUneiFYS5jtAZhy_Ki62vN2ETZmm_wI6cFE8OZvIKa1gTR5N6BxnaQAlnNAIZSwVtmuVyAVUt67lhauL3uu7WxH7ByG4trwgvRlJvg7s473hhaXi_G6MHx6ZEjx14x5MqPPDocBAsY5G6Yol1It-E7s43_QTZxTKF7tUEwSzaQoqJM9ag2lAx_6WIRd2R2O3sWAvS_xs1ZoolUrdxV83n9wKeacsH8qnxKzmybzfJoK_MPzlp_A_2aH_wGPz8We</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812509254</pqid></control><display><type>article</type><title>Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Al-Hamry, Ammar ; Lu, Tianqi ; Chen, Haoran ; Adiraju, Anurag ; Nasraoui, Salem ; Brahem, Amina ; Bajuk-Bogdanović, Danica ; Weheabby, Saddam ; Pašti, Igor A ; Kanoun, Olfa</creator><creatorcontrib>Al-Hamry, Ammar ; Lu, Tianqi ; Chen, Haoran ; Adiraju, Anurag ; Nasraoui, Salem ; Brahem, Amina ; Bajuk-Bogdanović, Danica ; Weheabby, Saddam ; Pašti, Igor A ; Kanoun, Olfa</creatorcontrib><description>In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties. Although direct laser scribing of GO-based humidity sensor shows an outstanding response (|Δ
|/|
| up to 638,800%), a lack of stability and repeatability has been observed. GO/MWNT-based humidity sensors are more conductive than GO sensors and relatively less sensitive (|Δ
|/|
| = 163,000%). However, they are more stable in harsh humid conditions, repeatable, and reproducible even after several years of shelf-life. In addition, they have fast response/recovery times of 10.7 s and 9.3 s and an ultra-fast response time of 61 ms when abrupt humidification/dehumidification is applied by respiration. All carbon-based sensors' overall properties confirm the advantage of introducing the GO/MWNT hybrid and laser direct writing to produce stable structures and sensors.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13091473</identifier><identifier>PMID: 37177018</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Analysis ; Carbon ; carbon nanotubes ; Circuits ; Composite materials ; Dehumidification ; Direct laser writing ; Energy dispersive X ray analysis ; Fourier transforms ; Graphene ; Graphite ; Homogeneity ; Humidification ; Humidity ; humidity sensor ; Identification and classification ; impedance spectroscopy ; Infrared spectroscopy ; Investigations ; laser direct writing ; Lasers ; Methods ; Multi wall carbon nanotubes ; nanocomposite ; Nanotechnology ; Nanotubes ; Oxides ; Photoelectric emission ; Properties ; reduced graphene oxide ; Relative humidity ; Reproducibility ; Response time ; Scanning microscopy ; Sensors ; Shelf life ; Spectroscopy ; X ray analysis</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-04, Vol.13 (9), p.1473</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3</citedby><cites>FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3</cites><orcidid>0000-0003-0952-3134 ; 0000-0002-7577-900X ; 0000-0002-7166-1266 ; 0000-0002-1002-9160 ; 0000-0003-2443-376X ; 0000-0003-0173-7023 ; 0000-0002-1000-9784 ; 0000-0002-8936-9108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812509254/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812509254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37177018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hamry, Ammar</creatorcontrib><creatorcontrib>Lu, Tianqi</creatorcontrib><creatorcontrib>Chen, Haoran</creatorcontrib><creatorcontrib>Adiraju, Anurag</creatorcontrib><creatorcontrib>Nasraoui, Salem</creatorcontrib><creatorcontrib>Brahem, Amina</creatorcontrib><creatorcontrib>Bajuk-Bogdanović, Danica</creatorcontrib><creatorcontrib>Weheabby, Saddam</creatorcontrib><creatorcontrib>Pašti, Igor A</creatorcontrib><creatorcontrib>Kanoun, Olfa</creatorcontrib><title>Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties. Although direct laser scribing of GO-based humidity sensor shows an outstanding response (|Δ
|/|
| up to 638,800%), a lack of stability and repeatability has been observed. GO/MWNT-based humidity sensors are more conductive than GO sensors and relatively less sensitive (|Δ
|/|
| = 163,000%). However, they are more stable in harsh humid conditions, repeatable, and reproducible even after several years of shelf-life. In addition, they have fast response/recovery times of 10.7 s and 9.3 s and an ultra-fast response time of 61 ms when abrupt humidification/dehumidification is applied by respiration. All carbon-based sensors' overall properties confirm the advantage of introducing the GO/MWNT hybrid and laser direct writing to produce stable structures and sensors.</description><subject>Adsorption</subject><subject>Analysis</subject><subject>Carbon</subject><subject>carbon nanotubes</subject><subject>Circuits</subject><subject>Composite materials</subject><subject>Dehumidification</subject><subject>Direct laser writing</subject><subject>Energy dispersive X ray analysis</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Homogeneity</subject><subject>Humidification</subject><subject>Humidity</subject><subject>humidity sensor</subject><subject>Identification and classification</subject><subject>impedance spectroscopy</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>laser direct writing</subject><subject>Lasers</subject><subject>Methods</subject><subject>Multi wall carbon nanotubes</subject><subject>nanocomposite</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxides</subject><subject>Photoelectric emission</subject><subject>Properties</subject><subject>reduced graphene oxide</subject><subject>Relative humidity</subject><subject>Reproducibility</subject><subject>Response time</subject><subject>Scanning microscopy</subject><subject>Sensors</subject><subject>Shelf life</subject><subject>Spectroscopy</subject><subject>X ray analysis</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAQjRCIVqU3zigSFw6k9efGPqGy0A9pRQ-lZ2vsTLZeJfZiJxX993jZUrXYB9szz-_NPE1VvafkhHNNTgOESDnRVLT8VXXISKsboTV9_ex-UB3nvCFlacqV5G-rA97StiVUHVbpdpgSNDcYsp_8PdYQuvoc8lRfzqPv_PRQ73Ix5forZOzqGOpvPqGb6lV5p-bGJW9L_CLB9g4D1te_fYenS0i2QH-U-qbZYq6XcdzGooH5XfWmhyHj8eN5VN2ef_-5vGxW1xdXy7NV4yRVUyMlCqaldEIzCq20XFF01jHKhe4XRErCFhaFBUc1bUUneiFYS5jtAZhy_Ki62vN2ETZmm_wI6cFE8OZvIKa1gTR5N6BxnaQAlnNAIZSwVtmuVyAVUt67lhauL3uu7WxH7ByG4trwgvRlJvg7s473hhaXi_G6MHx6ZEjx14x5MqPPDocBAsY5G6Yol1It-E7s43_QTZxTKF7tUEwSzaQoqJM9ag2lAx_6WIRd2R2O3sWAvS_xs1ZoolUrdxV83n9wKeacsH8qnxKzmybzfJoK_MPzlp_A_2aH_wGPz8We</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Al-Hamry, Ammar</creator><creator>Lu, Tianqi</creator><creator>Chen, Haoran</creator><creator>Adiraju, Anurag</creator><creator>Nasraoui, Salem</creator><creator>Brahem, Amina</creator><creator>Bajuk-Bogdanović, Danica</creator><creator>Weheabby, Saddam</creator><creator>Pašti, Igor A</creator><creator>Kanoun, Olfa</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0952-3134</orcidid><orcidid>https://orcid.org/0000-0002-7577-900X</orcidid><orcidid>https://orcid.org/0000-0002-7166-1266</orcidid><orcidid>https://orcid.org/0000-0002-1002-9160</orcidid><orcidid>https://orcid.org/0000-0003-2443-376X</orcidid><orcidid>https://orcid.org/0000-0003-0173-7023</orcidid><orcidid>https://orcid.org/0000-0002-1000-9784</orcidid><orcidid>https://orcid.org/0000-0002-8936-9108</orcidid></search><sort><creationdate>20230426</creationdate><title>Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites</title><author>Al-Hamry, Ammar ; Lu, Tianqi ; Chen, Haoran ; Adiraju, Anurag ; Nasraoui, Salem ; Brahem, Amina ; Bajuk-Bogdanović, Danica ; Weheabby, Saddam ; Pašti, Igor A ; Kanoun, Olfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Analysis</topic><topic>Carbon</topic><topic>carbon nanotubes</topic><topic>Circuits</topic><topic>Composite materials</topic><topic>Dehumidification</topic><topic>Direct laser writing</topic><topic>Energy dispersive X ray analysis</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Homogeneity</topic><topic>Humidification</topic><topic>Humidity</topic><topic>humidity sensor</topic><topic>Identification and classification</topic><topic>impedance spectroscopy</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>laser direct writing</topic><topic>Lasers</topic><topic>Methods</topic><topic>Multi wall carbon nanotubes</topic><topic>nanocomposite</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxides</topic><topic>Photoelectric emission</topic><topic>Properties</topic><topic>reduced graphene oxide</topic><topic>Relative humidity</topic><topic>Reproducibility</topic><topic>Response time</topic><topic>Scanning microscopy</topic><topic>Sensors</topic><topic>Shelf life</topic><topic>Spectroscopy</topic><topic>X ray analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hamry, Ammar</creatorcontrib><creatorcontrib>Lu, Tianqi</creatorcontrib><creatorcontrib>Chen, Haoran</creatorcontrib><creatorcontrib>Adiraju, Anurag</creatorcontrib><creatorcontrib>Nasraoui, Salem</creatorcontrib><creatorcontrib>Brahem, Amina</creatorcontrib><creatorcontrib>Bajuk-Bogdanović, Danica</creatorcontrib><creatorcontrib>Weheabby, Saddam</creatorcontrib><creatorcontrib>Pašti, Igor A</creatorcontrib><creatorcontrib>Kanoun, Olfa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hamry, Ammar</au><au>Lu, Tianqi</au><au>Chen, Haoran</au><au>Adiraju, Anurag</au><au>Nasraoui, Salem</au><au>Brahem, Amina</au><au>Bajuk-Bogdanović, Danica</au><au>Weheabby, Saddam</au><au>Pašti, Igor A</au><au>Kanoun, Olfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2023-04-26</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>1473</spage><pages>1473-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties. Although direct laser scribing of GO-based humidity sensor shows an outstanding response (|Δ
|/|
| up to 638,800%), a lack of stability and repeatability has been observed. GO/MWNT-based humidity sensors are more conductive than GO sensors and relatively less sensitive (|Δ
|/|
| = 163,000%). However, they are more stable in harsh humid conditions, repeatable, and reproducible even after several years of shelf-life. In addition, they have fast response/recovery times of 10.7 s and 9.3 s and an ultra-fast response time of 61 ms when abrupt humidification/dehumidification is applied by respiration. All carbon-based sensors' overall properties confirm the advantage of introducing the GO/MWNT hybrid and laser direct writing to produce stable structures and sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37177018</pmid><doi>10.3390/nano13091473</doi><orcidid>https://orcid.org/0000-0003-0952-3134</orcidid><orcidid>https://orcid.org/0000-0002-7577-900X</orcidid><orcidid>https://orcid.org/0000-0002-7166-1266</orcidid><orcidid>https://orcid.org/0000-0002-1002-9160</orcidid><orcidid>https://orcid.org/0000-0003-2443-376X</orcidid><orcidid>https://orcid.org/0000-0003-0173-7023</orcidid><orcidid>https://orcid.org/0000-0002-1000-9784</orcidid><orcidid>https://orcid.org/0000-0002-8936-9108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-04, Vol.13 (9), p.1473 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd51aab33ae4484bb8bdf8a58e13fc71 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adsorption Analysis Carbon carbon nanotubes Circuits Composite materials Dehumidification Direct laser writing Energy dispersive X ray analysis Fourier transforms Graphene Graphite Homogeneity Humidification Humidity humidity sensor Identification and classification impedance spectroscopy Infrared spectroscopy Investigations laser direct writing Lasers Methods Multi wall carbon nanotubes nanocomposite Nanotechnology Nanotubes Oxides Photoelectric emission Properties reduced graphene oxide Relative humidity Reproducibility Response time Scanning microscopy Sensors Shelf life Spectroscopy X ray analysis |
title | Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Sensitive%20and%20Fast%20Humidity%20Sensors%20Based%20on%20Direct%20Laser-Scribed%20Graphene%20Oxide/Carbon%20Nanotubes%20Composites&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Al-Hamry,%20Ammar&rft.date=2023-04-26&rft.volume=13&rft.issue=9&rft.spage=1473&rft.pages=1473-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13091473&rft_dat=%3Cgale_doaj_%3EA749098759%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-55e42955c4921a75b381ecbc21349f6055026be4bac19174d4f442702bfaa28c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812509254&rft_id=info:pmid/37177018&rft_galeid=A749098759&rfr_iscdi=true |