Loading…
Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes
Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling property on the whole experimental region. However, most existing methods for constructing optimal SLHDs have restr...
Saved in:
Published in: | Mathematics (Basel) 2019-09, Vol.7 (9), p.854 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93 |
container_end_page | |
container_issue | 9 |
container_start_page | 854 |
container_title | Mathematics (Basel) |
container_volume | 7 |
creator | Zhang, Jing Xu, Jin Jia, Kai Yin, Yimin Wang, Zhengming |
description | Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling property on the whole experimental region. However, most existing methods for constructing optimal SLHDs have restriction on the run sizes. In this paper, we propose a new method for constructing SLHDs with arbitrary run sizes, and a new combined space-filling measurement describing the space-filling property for both the whole design and its slices. Furthermore, we develop general algorithms to search for the optimal SLHD with arbitrary run sizes under the proposed measurement. Examples are presented to illustrate that effectiveness of the proposed methods. |
doi_str_mv | 10.3390/math7090854 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd608eae23ee48c089bb00a0d401c366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd608eae23ee48c089bb00a0d401c366</doaj_id><sourcerecordid>2548641561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93</originalsourceid><addsrcrecordid>eNpNUF1LwzAULaLg0D35BwI-SjVfbdrHMT82GAycPockvdkyurYmLTJ_vdGK7D7cezkczjmcJLkh-J6xEj8cVL8TuMRFxs-SCaVUpCLi5yf_ZTINYY_jlIQVvJwky3XXu4Oq0aZ2Biq0Ur1r0OLYgTeDBvQIwW2bgD5dvxs5AbUWzbx2vVf-iF6HBm3cF4Tr5MKqOsD0714l789Pb_NFulq_LOezVWpYzvtUW0NyXjGbWSAZUFspiwU21pQCa0orKxTPhaHYCuBxM6IVCKWIrkRuSnaVLEfdqlV72fmY3h9lq5z8BVq_lcr3ztQgTZXjAhRQBsALg4tSa4wVrjgmMU0etW5Hrc63HwOEXu7bwTcxvqQZL3JOspxE1t3IMr4NwYP9dyVY_lQvT6pn30G1dpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548641561</pqid></control><display><type>article</type><title>Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes</title><source>Publicly Available Content Database</source><creator>Zhang, Jing ; Xu, Jin ; Jia, Kai ; Yin, Yimin ; Wang, Zhengming</creator><creatorcontrib>Zhang, Jing ; Xu, Jin ; Jia, Kai ; Yin, Yimin ; Wang, Zhengming</creatorcontrib><description>Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling property on the whole experimental region. However, most existing methods for constructing optimal SLHDs have restriction on the run sizes. In this paper, we propose a new method for constructing SLHDs with arbitrary run sizes, and a new combined space-filling measurement describing the space-filling property for both the whole design and its slices. Furthermore, we develop general algorithms to search for the optimal SLHD with arbitrary run sizes under the proposed measurement. Examples are presented to illustrate that effectiveness of the proposed methods.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7090854</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; computer experiment ; Design optimization ; Efficiency ; Experiments ; Food science ; Hypercubes ; maximin distance criterion ; Methods ; optimal design ; space-filling design</subject><ispartof>Mathematics (Basel), 2019-09, Vol.7 (9), p.854</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93</citedby><cites>FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548641561/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548641561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Jia, Kai</creatorcontrib><creatorcontrib>Yin, Yimin</creatorcontrib><creatorcontrib>Wang, Zhengming</creatorcontrib><title>Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes</title><title>Mathematics (Basel)</title><description>Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling property on the whole experimental region. However, most existing methods for constructing optimal SLHDs have restriction on the run sizes. In this paper, we propose a new method for constructing SLHDs with arbitrary run sizes, and a new combined space-filling measurement describing the space-filling property for both the whole design and its slices. Furthermore, we develop general algorithms to search for the optimal SLHD with arbitrary run sizes under the proposed measurement. Examples are presented to illustrate that effectiveness of the proposed methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>computer experiment</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Food science</subject><subject>Hypercubes</subject><subject>maximin distance criterion</subject><subject>Methods</subject><subject>optimal design</subject><subject>space-filling design</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LwzAULaLg0D35BwI-SjVfbdrHMT82GAycPockvdkyurYmLTJ_vdGK7D7cezkczjmcJLkh-J6xEj8cVL8TuMRFxs-SCaVUpCLi5yf_ZTINYY_jlIQVvJwky3XXu4Oq0aZ2Biq0Ur1r0OLYgTeDBvQIwW2bgD5dvxs5AbUWzbx2vVf-iF6HBm3cF4Tr5MKqOsD0714l789Pb_NFulq_LOezVWpYzvtUW0NyXjGbWSAZUFspiwU21pQCa0orKxTPhaHYCuBxM6IVCKWIrkRuSnaVLEfdqlV72fmY3h9lq5z8BVq_lcr3ztQgTZXjAhRQBsALg4tSa4wVrjgmMU0etW5Hrc63HwOEXu7bwTcxvqQZL3JOspxE1t3IMr4NwYP9dyVY_lQvT6pn30G1dpQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhang, Jing</creator><creator>Xu, Jin</creator><creator>Jia, Kai</creator><creator>Yin, Yimin</creator><creator>Wang, Zhengming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes</title><author>Zhang, Jing ; Xu, Jin ; Jia, Kai ; Yin, Yimin ; Wang, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>computer experiment</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Food science</topic><topic>Hypercubes</topic><topic>maximin distance criterion</topic><topic>Methods</topic><topic>optimal design</topic><topic>space-filling design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Jia, Kai</creatorcontrib><creatorcontrib>Yin, Yimin</creatorcontrib><creatorcontrib>Wang, Zhengming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Xu, Jin</au><au>Jia, Kai</au><au>Yin, Yimin</au><au>Wang, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>854</spage><pages>854-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling property on the whole experimental region. However, most existing methods for constructing optimal SLHDs have restriction on the run sizes. In this paper, we propose a new method for constructing SLHDs with arbitrary run sizes, and a new combined space-filling measurement describing the space-filling property for both the whole design and its slices. Furthermore, we develop general algorithms to search for the optimal SLHD with arbitrary run sizes under the proposed measurement. Examples are presented to illustrate that effectiveness of the proposed methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7090854</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2019-09, Vol.7 (9), p.854 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd608eae23ee48c089bb00a0d401c366 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms computer experiment Design optimization Efficiency Experiments Food science Hypercubes maximin distance criterion Methods optimal design space-filling design |
title | Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Sliced%20Latin%20Hypercube%20Designs%20with%20Slices%20of%20Arbitrary%20Run%20Sizes&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhang,%20Jing&rft.date=2019-09-01&rft.volume=7&rft.issue=9&rft.spage=854&rft.pages=854-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7090854&rft_dat=%3Cproquest_doaj_%3E2548641561%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-bfc164d3f5fe15e2fdaf070cfc970b22df7a467c20f7e420f31bae7aa1bd76c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548641561&rft_id=info:pmid/&rfr_iscdi=true |