Loading…
Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106
Wind turbines are exposed to the turbulent wind of the atmospheric boundary layer. Consequently, the aerodynamic forces acting on the rotor blades are highly complex. To improve the understanding, a common practice is the experimental or numerical investigation of 2d (wind turbine) blade sections. I...
Saved in:
Published in: | Wind energy (Chichester, England) England), 2022-08, Vol.25 (8), p.1332-1342 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1342 |
container_issue | 8 |
container_start_page | 1332 |
container_title | Wind energy (Chichester, England) |
container_volume | 25 |
creator | Neunaber, Ingrid Danbon, Frédéric Soulier, Antoine Voisin, Dimitri Guilmineau, Emmanuel Delpech, Philippe Courtine, Sébastien Taymans, Claire Braud, Caroline |
description | Wind turbines are exposed to the turbulent wind of the atmospheric boundary layer. Consequently, the aerodynamic forces acting on the rotor blades are highly complex. To improve the understanding, a common practice is the experimental or numerical investigation of 2d (wind turbine) blade sections. In these investigations, the flow around the 2d blade section is assumed to be two‐dimensional; however, 3d effects are known to occur. Therefore, we combine 2d CFD simulations and experimental investigations in a wind tunnel with a 2d wind turbine rotor blade section at full‐scale (i.e., chord length
c=1.25m and chord‐based Reynolds number of
Rec=4.7·106). In the wind tunnel, the inflow turbulence intensity is
TI≈1.5%. To avoid wall effects biasing the results, the profile does not span the whole test section. The profile was equipped with two rows of pressure taps around the airfoil, close to the center, to monitor the time‐resolved aerodynamic response as well as the flow around the airfoil. The normal force,
cp curves, and the separation point are analyzed. While 2d simulations and experiments match well, in the experiments, we find natural instabilities, that is, local and temporal variations of the flow separation point at angles of attack close to the maximum lift that are not triggered externally, for example, by inflow variations. |
doi_str_mv | 10.1002/we.2732 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd6d52c1f1e54f8b9b2fe0b89326f840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd6d52c1f1e54f8b9b2fe0b89326f840</doaj_id><sourcerecordid>2688743248</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1632-66032fbb2883a25980e14a86f284d716112fe4743a77c3404f8c5530bab973973</originalsourceid><addsrcrecordid>eNo9kc-KFDEQxhtRcF3FVwh4lB7zr9PpoyyrLiwIouwxJJ2KZsgka5JmmJtXbz7CvoX3eZR9kk3viFBQxVcfvyr4uu41wRuCMX23hw0dGX3SnRE8TT2RlD99nIeeU86fdy9K2WJMMCHyrPt946NFdYkRAip1sQeUIoq6LlkH5GOp2vjga5Mdqj8AxZR3beNSnmG1auSWEO5__SmzDoD2J1w2PgIyQVtABebqV2dFX-AQU7AFxWVnICO-GY93x7_HO4LFy-6Z06HAq3_9vPv24fLrxaf--vPHq4v3170lgtFeCMyoM4ZKyTQdJomBcC2Fo5LbkQhCqAM-cqbHcWYccyfnYWDYaDONrNV5d3Xi2qS36jb7nc4HlbRXj0LK35XO1c8B1GyFHehMHIGhccxkGhsbOTEqnOS4sd6cWLc5_VygVLVNS47tfUWFlO0LymVzvT259j7A4f9JgtUamNqDWgNTN5drYw_duouL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688743248</pqid></control><display><type>article</type><title>Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106</title><source>Wiley Online Library Open Access</source><source>EZB Electronic Journals Library</source><creator>Neunaber, Ingrid ; Danbon, Frédéric ; Soulier, Antoine ; Voisin, Dimitri ; Guilmineau, Emmanuel ; Delpech, Philippe ; Courtine, Sébastien ; Taymans, Claire ; Braud, Caroline</creator><creatorcontrib>Neunaber, Ingrid ; Danbon, Frédéric ; Soulier, Antoine ; Voisin, Dimitri ; Guilmineau, Emmanuel ; Delpech, Philippe ; Courtine, Sébastien ; Taymans, Claire ; Braud, Caroline</creatorcontrib><description>Wind turbines are exposed to the turbulent wind of the atmospheric boundary layer. Consequently, the aerodynamic forces acting on the rotor blades are highly complex. To improve the understanding, a common practice is the experimental or numerical investigation of 2d (wind turbine) blade sections. In these investigations, the flow around the 2d blade section is assumed to be two‐dimensional; however, 3d effects are known to occur. Therefore, we combine 2d CFD simulations and experimental investigations in a wind tunnel with a 2d wind turbine rotor blade section at full‐scale (i.e., chord length
c=1.25m and chord‐based Reynolds number of
Rec=4.7·106). In the wind tunnel, the inflow turbulence intensity is
TI≈1.5%. To avoid wall effects biasing the results, the profile does not span the whole test section. The profile was equipped with two rows of pressure taps around the airfoil, close to the center, to monitor the time‐resolved aerodynamic response as well as the flow around the airfoil. The normal force,
cp curves, and the separation point are analyzed. While 2d simulations and experiments match well, in the experiments, we find natural instabilities, that is, local and temporal variations of the flow separation point at angles of attack close to the maximum lift that are not triggered externally, for example, by inflow variations.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2732</identifier><language>eng</language><publisher>Bognor Regis: John Wiley & Sons, Inc</publisher><subject>3d effects ; Aerodynamic forces ; Aerodynamics ; Airfoils ; Angle of attack ; Atmospheric boundary layer ; Atmospheric turbulence ; Boundary layers ; Flow separation ; Fluid flow ; Inflow ; Reynolds number ; Rotor blades ; Rotor blades (turbomachinery) ; Separation ; Temporal variations ; Turbine blades ; Turbines ; Turbulence intensity ; Turbulent wind ; unsteady aerodynamics ; Wall effects ; wind energy ; Wind power ; wind tunnel experiments ; Wind tunnels ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2022-08, Vol.25 (8), p.1332-1342</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3787-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2732$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2732$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Neunaber, Ingrid</creatorcontrib><creatorcontrib>Danbon, Frédéric</creatorcontrib><creatorcontrib>Soulier, Antoine</creatorcontrib><creatorcontrib>Voisin, Dimitri</creatorcontrib><creatorcontrib>Guilmineau, Emmanuel</creatorcontrib><creatorcontrib>Delpech, Philippe</creatorcontrib><creatorcontrib>Courtine, Sébastien</creatorcontrib><creatorcontrib>Taymans, Claire</creatorcontrib><creatorcontrib>Braud, Caroline</creatorcontrib><title>Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106</title><title>Wind energy (Chichester, England)</title><description>Wind turbines are exposed to the turbulent wind of the atmospheric boundary layer. Consequently, the aerodynamic forces acting on the rotor blades are highly complex. To improve the understanding, a common practice is the experimental or numerical investigation of 2d (wind turbine) blade sections. In these investigations, the flow around the 2d blade section is assumed to be two‐dimensional; however, 3d effects are known to occur. Therefore, we combine 2d CFD simulations and experimental investigations in a wind tunnel with a 2d wind turbine rotor blade section at full‐scale (i.e., chord length
c=1.25m and chord‐based Reynolds number of
Rec=4.7·106). In the wind tunnel, the inflow turbulence intensity is
TI≈1.5%. To avoid wall effects biasing the results, the profile does not span the whole test section. The profile was equipped with two rows of pressure taps around the airfoil, close to the center, to monitor the time‐resolved aerodynamic response as well as the flow around the airfoil. The normal force,
cp curves, and the separation point are analyzed. While 2d simulations and experiments match well, in the experiments, we find natural instabilities, that is, local and temporal variations of the flow separation point at angles of attack close to the maximum lift that are not triggered externally, for example, by inflow variations.</description><subject>3d effects</subject><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric turbulence</subject><subject>Boundary layers</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Inflow</subject><subject>Reynolds number</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Separation</subject><subject>Temporal variations</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Turbulence intensity</subject><subject>Turbulent wind</subject><subject>unsteady aerodynamics</subject><subject>Wall effects</subject><subject>wind energy</subject><subject>Wind power</subject><subject>wind tunnel experiments</subject><subject>Wind tunnels</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc-KFDEQxhtRcF3FVwh4lB7zr9PpoyyrLiwIouwxJJ2KZsgka5JmmJtXbz7CvoX3eZR9kk3viFBQxVcfvyr4uu41wRuCMX23hw0dGX3SnRE8TT2RlD99nIeeU86fdy9K2WJMMCHyrPt946NFdYkRAip1sQeUIoq6LlkH5GOp2vjga5Mdqj8AxZR3beNSnmG1auSWEO5__SmzDoD2J1w2PgIyQVtABebqV2dFX-AQU7AFxWVnICO-GY93x7_HO4LFy-6Z06HAq3_9vPv24fLrxaf--vPHq4v3170lgtFeCMyoM4ZKyTQdJomBcC2Fo5LbkQhCqAM-cqbHcWYccyfnYWDYaDONrNV5d3Xi2qS36jb7nc4HlbRXj0LK35XO1c8B1GyFHehMHIGhccxkGhsbOTEqnOS4sd6cWLc5_VygVLVNS47tfUWFlO0LymVzvT259j7A4f9JgtUamNqDWgNTN5drYw_duouL</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Neunaber, Ingrid</creator><creator>Danbon, Frédéric</creator><creator>Soulier, Antoine</creator><creator>Voisin, Dimitri</creator><creator>Guilmineau, Emmanuel</creator><creator>Delpech, Philippe</creator><creator>Courtine, Sébastien</creator><creator>Taymans, Claire</creator><creator>Braud, Caroline</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>7ST</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3787-3118</orcidid></search><sort><creationdate>202208</creationdate><title>Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106</title><author>Neunaber, Ingrid ; Danbon, Frédéric ; Soulier, Antoine ; Voisin, Dimitri ; Guilmineau, Emmanuel ; Delpech, Philippe ; Courtine, Sébastien ; Taymans, Claire ; Braud, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1632-66032fbb2883a25980e14a86f284d716112fe4743a77c3404f8c5530bab973973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3d effects</topic><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric turbulence</topic><topic>Boundary layers</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Inflow</topic><topic>Reynolds number</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Separation</topic><topic>Temporal variations</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Turbulence intensity</topic><topic>Turbulent wind</topic><topic>unsteady aerodynamics</topic><topic>Wall effects</topic><topic>wind energy</topic><topic>Wind power</topic><topic>wind tunnel experiments</topic><topic>Wind tunnels</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neunaber, Ingrid</creatorcontrib><creatorcontrib>Danbon, Frédéric</creatorcontrib><creatorcontrib>Soulier, Antoine</creatorcontrib><creatorcontrib>Voisin, Dimitri</creatorcontrib><creatorcontrib>Guilmineau, Emmanuel</creatorcontrib><creatorcontrib>Delpech, Philippe</creatorcontrib><creatorcontrib>Courtine, Sébastien</creatorcontrib><creatorcontrib>Taymans, Claire</creatorcontrib><creatorcontrib>Braud, Caroline</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Environment Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neunaber, Ingrid</au><au>Danbon, Frédéric</au><au>Soulier, Antoine</au><au>Voisin, Dimitri</au><au>Guilmineau, Emmanuel</au><au>Delpech, Philippe</au><au>Courtine, Sébastien</au><au>Taymans, Claire</au><au>Braud, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2022-08</date><risdate>2022</risdate><volume>25</volume><issue>8</issue><spage>1332</spage><epage>1342</epage><pages>1332-1342</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>Wind turbines are exposed to the turbulent wind of the atmospheric boundary layer. Consequently, the aerodynamic forces acting on the rotor blades are highly complex. To improve the understanding, a common practice is the experimental or numerical investigation of 2d (wind turbine) blade sections. In these investigations, the flow around the 2d blade section is assumed to be two‐dimensional; however, 3d effects are known to occur. Therefore, we combine 2d CFD simulations and experimental investigations in a wind tunnel with a 2d wind turbine rotor blade section at full‐scale (i.e., chord length
c=1.25m and chord‐based Reynolds number of
Rec=4.7·106). In the wind tunnel, the inflow turbulence intensity is
TI≈1.5%. To avoid wall effects biasing the results, the profile does not span the whole test section. The profile was equipped with two rows of pressure taps around the airfoil, close to the center, to monitor the time‐resolved aerodynamic response as well as the flow around the airfoil. The normal force,
cp curves, and the separation point are analyzed. While 2d simulations and experiments match well, in the experiments, we find natural instabilities, that is, local and temporal variations of the flow separation point at angles of attack close to the maximum lift that are not triggered externally, for example, by inflow variations.</abstract><cop>Bognor Regis</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/we.2732</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3787-3118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-4244 |
ispartof | Wind energy (Chichester, England), 2022-08, Vol.25 (8), p.1332-1342 |
issn | 1095-4244 1099-1824 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd6d52c1f1e54f8b9b2fe0b89326f840 |
source | Wiley Online Library Open Access; EZB Electronic Journals Library |
subjects | 3d effects Aerodynamic forces Aerodynamics Airfoils Angle of attack Atmospheric boundary layer Atmospheric turbulence Boundary layers Flow separation Fluid flow Inflow Reynolds number Rotor blades Rotor blades (turbomachinery) Separation Temporal variations Turbine blades Turbines Turbulence intensity Turbulent wind unsteady aerodynamics Wall effects wind energy Wind power wind tunnel experiments Wind tunnels Wind turbines |
title | Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 106 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20tunnel%20study%20on%20natural%20instability%20of%20the%20normal%20force%20on%20a%20full%E2%80%90scale%20wind%20turbine%20blade%20section%20at%20Reynolds%20number%204.7%C2%A0%C2%B7%C2%A0106&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Neunaber,%20Ingrid&rft.date=2022-08&rft.volume=25&rft.issue=8&rft.spage=1332&rft.epage=1342&rft.pages=1332-1342&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2732&rft_dat=%3Cproquest_doaj_%3E2688743248%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d1632-66032fbb2883a25980e14a86f284d716112fe4743a77c3404f8c5530bab973973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688743248&rft_id=info:pmid/&rfr_iscdi=true |