Loading…

Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami

On 11 March 2011 the Tohoku tsunami devastated the east coast of Japan, claiming thousands of casualties and destroying coastal settlements and infrastructure. In this paper tsunami generation, propagation, and inundation are modeled to hindcast the event. Earthquake source models with heterogeneous...

Full description

Saved in:
Bibliographic Details
Published in:Natural hazards and earth system sciences 2012-04, Vol.12 (4), p.1017-1028
Main Authors: Løvholt, F, Kaiser, G, Glimsdal, S, Scheele, L, Harbitz, C. B, Pedersen, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On 11 March 2011 the Tohoku tsunami devastated the east coast of Japan, claiming thousands of casualties and destroying coastal settlements and infrastructure. In this paper tsunami generation, propagation, and inundation are modeled to hindcast the event. Earthquake source models with heterogeneous slips are developed in order to match tsunami observations, including a best fit initial sea surface elevation with water levels up to 8 m. Tsunami simulations were compared to buoys in the Pacific, showing good agreement. In the far field the frequency dispersion provided a significant reduction even for the leading wave. Furthermore, inundation simulations were performed for ten different study areas. The results compared well with run-up measurements available and trim lines derived from satellite images, but with some overestimation of the modeled surface elevation in the northern part of the Sanriku coast. For inundation modeling this work aimed at using freely available, medium-resolution data for topography, bottom friction, and bathymetry, which are easily accessible in the framework of a rapid assessment. Although these data come along with some inaccuracies, the results of the tsunami simulations suggest that their use is feasible for application in rapid tsunami hazard assessments. A heterogeneous source model is essential to simulate the observed distribution of the run-up correctly, though.
ISSN:1684-9981
1561-8633
1684-9981
DOI:10.5194/nhess-12-1017-2012