Loading…

The Effect of Air Parameters on the Evaporation Loss in a Natural Draft Counter-Flow Wet Cooling Tower

The measures to reduce the impact of evaporation loss in a natural draft counter-flow wet cooling tower (NDWCT) have important implications for water conservation and emissions reduction. A mathematical model of evaporation loss in the NDWCT was established by using a modified Merkel method. The NDW...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-12, Vol.13 (23), p.6174
Main Authors: Yuan, Wei, Sun, Fengzhong, Liu, Ruqing, Chen, Xuehong, Li, Ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The measures to reduce the impact of evaporation loss in a natural draft counter-flow wet cooling tower (NDWCT) have important implications for water conservation and emissions reduction. A mathematical model of evaporation loss in the NDWCT was established by using a modified Merkel method. The NDWCTs in the 300 MW and 600 MW power plant were taken as the research objects. Comparing experimental values with calculated values, the relative error was less than 3%. Then, the effect of air parameters on evaporation loss of NDWCT was analyzed. The results showed that, with the increase of dry bulb temperature, the evaporation heat dissipation and the evaporation loss decreased, while the rate of evaporation loss caused by unit temperature difference increased. The ambient temperature increased by 1 °C and the evaporation loss was reduced by nearly 26.65 t/h. When the relative air humidity increased, the evaporation heat dissipation and evaporation loss decreased, and the rate of evaporation loss caused by unit temperature difference decreased. When relative air humidity increased by 1%, the outlet water temperature rose by about 0.08 °C, and the evaporation loss decreased by about 5.63 t/h.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13236174