Loading…
Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes
Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB...
Saved in:
Published in: | Frontiers in molecular biosciences 2015-07, Vol.2, p.37-37 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823 |
---|---|
cites | |
container_end_page | 37 |
container_issue | |
container_start_page | 37 |
container_title | Frontiers in molecular biosciences |
container_volume | 2 |
creator | Velazquez Escobar, Francisco von Stetten, David Günther-Lütkens, Mina Keidel, Anke Michael, Norbert Lamparter, Tilman Essen, Lars-Oliver Hughes, Jon Gärtner, Wolfgang Yang, Yang Heyne, Karsten Mroginski, Maria A Hildebrandt, Peter |
description | Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed. |
doi_str_mv | 10.3389/fmolb.2015.00037 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f</doaj_id><sourcerecordid>1700106358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</originalsourceid><addsrcrecordid>eNpVkUtr3DAUhUVpaUKSfVfFy25mqqctbQpl6CMQaBcpZBEQsnw1VrB1XVkTmH9fz0wakpWEdM53j3QI-cDoWghtPocRh3bNKVNrSqlo3pBzzk290trcvX2xPyNX8_ywSJhaVLV8T854zVlT1-ac3G8wBcyjKxGTG6oeCmTcQoJY9hWGqvRQ_Q658n3GEaceM1QxVdPgUqlc6iq_dwlb5xdfXABTvy94FMN8Sd4FN8xw9bRekD_fv91ufq5ufv243ny9WXnFdVmx0DZtI4wMQGvhePDa1E0IommVppKCoJLpEFTjDEinldAi1E6zhlLjNBcX5PrE7dA92CnH0eW9RRft8QDz1rpcoh_A-s5wL6FpqfRS0dZQJiXtQBnvQLKwsL6cWNOuHaHzkEp2wyvo65sUe7vFRyul0Ywewnx6AmT8u4O52DHOHoblwwB3sz2kZss7lV6k9CT1Gec5Q3gew6g9dGyPHdtDx_bY8WL5-DLes-F_o-IfXralVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700106358</pqid></control><display><type>article</type><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><source>Open Access: PubMed Central</source><creator>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</creator><creatorcontrib>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</creatorcontrib><description>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2015.00037</identifier><identifier>PMID: 26217669</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Hydrogen Bonding ; isomerization ; Physics ; Phytochrome ; quantum chemical calculations ; Structural heterogeneity ; tetrapyrrole</subject><ispartof>Frontiers in molecular biosciences, 2015-07, Vol.2, p.37-37</ispartof><rights>Copyright © 2015 Velazquez Escobar, von Stetten, Günther-Lütkens, Keidel, Michael, Lamparter, Essen, Hughes, Gärtner, Yang, Heyne, Mroginski and Hildebrandt. 2015 Velazquez Escobar, von Stetten, Günther-Lütkens, Keidel, Michael, Lamparter, Essen, Hughes, Gärtner, Yang, Heyne, Mroginski and Hildebrandt</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26217669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velazquez Escobar, Francisco</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Günther-Lütkens, Mina</creatorcontrib><creatorcontrib>Keidel, Anke</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Heyne, Karsten</creatorcontrib><creatorcontrib>Mroginski, Maria A</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><title>Frontiers in molecular biosciences</title><addtitle>Front Mol Biosci</addtitle><description>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</description><subject>Hydrogen Bonding</subject><subject>isomerization</subject><subject>Physics</subject><subject>Phytochrome</subject><subject>quantum chemical calculations</subject><subject>Structural heterogeneity</subject><subject>tetrapyrrole</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtr3DAUhUVpaUKSfVfFy25mqqctbQpl6CMQaBcpZBEQsnw1VrB1XVkTmH9fz0wakpWEdM53j3QI-cDoWghtPocRh3bNKVNrSqlo3pBzzk290trcvX2xPyNX8_ywSJhaVLV8T854zVlT1-ac3G8wBcyjKxGTG6oeCmTcQoJY9hWGqvRQ_Q658n3GEaceM1QxVdPgUqlc6iq_dwlb5xdfXABTvy94FMN8Sd4FN8xw9bRekD_fv91ufq5ufv243ny9WXnFdVmx0DZtI4wMQGvhePDa1E0IommVppKCoJLpEFTjDEinldAi1E6zhlLjNBcX5PrE7dA92CnH0eW9RRft8QDz1rpcoh_A-s5wL6FpqfRS0dZQJiXtQBnvQLKwsL6cWNOuHaHzkEp2wyvo65sUe7vFRyul0Ywewnx6AmT8u4O52DHOHoblwwB3sz2kZss7lV6k9CT1Gec5Q3gew6g9dGyPHdtDx_bY8WL5-DLes-F_o-IfXralVA</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Velazquez Escobar, Francisco</creator><creator>von Stetten, David</creator><creator>Günther-Lütkens, Mina</creator><creator>Keidel, Anke</creator><creator>Michael, Norbert</creator><creator>Lamparter, Tilman</creator><creator>Essen, Lars-Oliver</creator><creator>Hughes, Jon</creator><creator>Gärtner, Wolfgang</creator><creator>Yang, Yang</creator><creator>Heyne, Karsten</creator><creator>Mroginski, Maria A</creator><creator>Hildebrandt, Peter</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150710</creationdate><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><author>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Hydrogen Bonding</topic><topic>isomerization</topic><topic>Physics</topic><topic>Phytochrome</topic><topic>quantum chemical calculations</topic><topic>Structural heterogeneity</topic><topic>tetrapyrrole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velazquez Escobar, Francisco</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Günther-Lütkens, Mina</creatorcontrib><creatorcontrib>Keidel, Anke</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Heyne, Karsten</creatorcontrib><creatorcontrib>Mroginski, Maria A</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velazquez Escobar, Francisco</au><au>von Stetten, David</au><au>Günther-Lütkens, Mina</au><au>Keidel, Anke</au><au>Michael, Norbert</au><au>Lamparter, Tilman</au><au>Essen, Lars-Oliver</au><au>Hughes, Jon</au><au>Gärtner, Wolfgang</au><au>Yang, Yang</au><au>Heyne, Karsten</au><au>Mroginski, Maria A</au><au>Hildebrandt, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</atitle><jtitle>Frontiers in molecular biosciences</jtitle><addtitle>Front Mol Biosci</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>2</volume><spage>37</spage><epage>37</epage><pages>37-37</pages><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>26217669</pmid><doi>10.3389/fmolb.2015.00037</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-889X |
ispartof | Frontiers in molecular biosciences, 2015-07, Vol.2, p.37-37 |
issn | 2296-889X 2296-889X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f |
source | Open Access: PubMed Central |
subjects | Hydrogen Bonding isomerization Physics Phytochrome quantum chemical calculations Structural heterogeneity tetrapyrrole |
title | Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20heterogeneity%20of%20the%20Pfr%20chromophore%20in%20plant%20and%20cyanobacterial%20phytochromes&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Velazquez%20Escobar,%20Francisco&rft.date=2015-07-10&rft.volume=2&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2015.00037&rft_dat=%3Cproquest_doaj_%3E1700106358%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1700106358&rft_id=info:pmid/26217669&rfr_iscdi=true |