Loading…

Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in molecular biosciences 2015-07, Vol.2, p.37-37
Main Authors: Velazquez Escobar, Francisco, von Stetten, David, Günther-Lütkens, Mina, Keidel, Anke, Michael, Norbert, Lamparter, Tilman, Essen, Lars-Oliver, Hughes, Jon, Gärtner, Wolfgang, Yang, Yang, Heyne, Karsten, Mroginski, Maria A, Hildebrandt, Peter
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823
cites
container_end_page 37
container_issue
container_start_page 37
container_title Frontiers in molecular biosciences
container_volume 2
creator Velazquez Escobar, Francisco
von Stetten, David
Günther-Lütkens, Mina
Keidel, Anke
Michael, Norbert
Lamparter, Tilman
Essen, Lars-Oliver
Hughes, Jon
Gärtner, Wolfgang
Yang, Yang
Heyne, Karsten
Mroginski, Maria A
Hildebrandt, Peter
description Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.
doi_str_mv 10.3389/fmolb.2015.00037
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f</doaj_id><sourcerecordid>1700106358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</originalsourceid><addsrcrecordid>eNpVkUtr3DAUhUVpaUKSfVfFy25mqqctbQpl6CMQaBcpZBEQsnw1VrB1XVkTmH9fz0wakpWEdM53j3QI-cDoWghtPocRh3bNKVNrSqlo3pBzzk290trcvX2xPyNX8_ywSJhaVLV8T854zVlT1-ac3G8wBcyjKxGTG6oeCmTcQoJY9hWGqvRQ_Q658n3GEaceM1QxVdPgUqlc6iq_dwlb5xdfXABTvy94FMN8Sd4FN8xw9bRekD_fv91ufq5ufv243ny9WXnFdVmx0DZtI4wMQGvhePDa1E0IommVppKCoJLpEFTjDEinldAi1E6zhlLjNBcX5PrE7dA92CnH0eW9RRft8QDz1rpcoh_A-s5wL6FpqfRS0dZQJiXtQBnvQLKwsL6cWNOuHaHzkEp2wyvo65sUe7vFRyul0Ywewnx6AmT8u4O52DHOHoblwwB3sz2kZss7lV6k9CT1Gec5Q3gew6g9dGyPHdtDx_bY8WL5-DLes-F_o-IfXralVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700106358</pqid></control><display><type>article</type><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><source>Open Access: PubMed Central</source><creator>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</creator><creatorcontrib>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</creatorcontrib><description>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2015.00037</identifier><identifier>PMID: 26217669</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Hydrogen Bonding ; isomerization ; Physics ; Phytochrome ; quantum chemical calculations ; Structural heterogeneity ; tetrapyrrole</subject><ispartof>Frontiers in molecular biosciences, 2015-07, Vol.2, p.37-37</ispartof><rights>Copyright © 2015 Velazquez Escobar, von Stetten, Günther-Lütkens, Keidel, Michael, Lamparter, Essen, Hughes, Gärtner, Yang, Heyne, Mroginski and Hildebrandt. 2015 Velazquez Escobar, von Stetten, Günther-Lütkens, Keidel, Michael, Lamparter, Essen, Hughes, Gärtner, Yang, Heyne, Mroginski and Hildebrandt</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26217669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velazquez Escobar, Francisco</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Günther-Lütkens, Mina</creatorcontrib><creatorcontrib>Keidel, Anke</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Heyne, Karsten</creatorcontrib><creatorcontrib>Mroginski, Maria A</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><title>Frontiers in molecular biosciences</title><addtitle>Front Mol Biosci</addtitle><description>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</description><subject>Hydrogen Bonding</subject><subject>isomerization</subject><subject>Physics</subject><subject>Phytochrome</subject><subject>quantum chemical calculations</subject><subject>Structural heterogeneity</subject><subject>tetrapyrrole</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtr3DAUhUVpaUKSfVfFy25mqqctbQpl6CMQaBcpZBEQsnw1VrB1XVkTmH9fz0wakpWEdM53j3QI-cDoWghtPocRh3bNKVNrSqlo3pBzzk290trcvX2xPyNX8_ywSJhaVLV8T854zVlT1-ac3G8wBcyjKxGTG6oeCmTcQoJY9hWGqvRQ_Q658n3GEaceM1QxVdPgUqlc6iq_dwlb5xdfXABTvy94FMN8Sd4FN8xw9bRekD_fv91ufq5ufv243ny9WXnFdVmx0DZtI4wMQGvhePDa1E0IommVppKCoJLpEFTjDEinldAi1E6zhlLjNBcX5PrE7dA92CnH0eW9RRft8QDz1rpcoh_A-s5wL6FpqfRS0dZQJiXtQBnvQLKwsL6cWNOuHaHzkEp2wyvo65sUe7vFRyul0Ywewnx6AmT8u4O52DHOHoblwwB3sz2kZss7lV6k9CT1Gec5Q3gew6g9dGyPHdtDx_bY8WL5-DLes-F_o-IfXralVA</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Velazquez Escobar, Francisco</creator><creator>von Stetten, David</creator><creator>Günther-Lütkens, Mina</creator><creator>Keidel, Anke</creator><creator>Michael, Norbert</creator><creator>Lamparter, Tilman</creator><creator>Essen, Lars-Oliver</creator><creator>Hughes, Jon</creator><creator>Gärtner, Wolfgang</creator><creator>Yang, Yang</creator><creator>Heyne, Karsten</creator><creator>Mroginski, Maria A</creator><creator>Hildebrandt, Peter</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150710</creationdate><title>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</title><author>Velazquez Escobar, Francisco ; von Stetten, David ; Günther-Lütkens, Mina ; Keidel, Anke ; Michael, Norbert ; Lamparter, Tilman ; Essen, Lars-Oliver ; Hughes, Jon ; Gärtner, Wolfgang ; Yang, Yang ; Heyne, Karsten ; Mroginski, Maria A ; Hildebrandt, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Hydrogen Bonding</topic><topic>isomerization</topic><topic>Physics</topic><topic>Phytochrome</topic><topic>quantum chemical calculations</topic><topic>Structural heterogeneity</topic><topic>tetrapyrrole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velazquez Escobar, Francisco</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Günther-Lütkens, Mina</creatorcontrib><creatorcontrib>Keidel, Anke</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Heyne, Karsten</creatorcontrib><creatorcontrib>Mroginski, Maria A</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velazquez Escobar, Francisco</au><au>von Stetten, David</au><au>Günther-Lütkens, Mina</au><au>Keidel, Anke</au><au>Michael, Norbert</au><au>Lamparter, Tilman</au><au>Essen, Lars-Oliver</au><au>Hughes, Jon</au><au>Gärtner, Wolfgang</au><au>Yang, Yang</au><au>Heyne, Karsten</au><au>Mroginski, Maria A</au><au>Hildebrandt, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes</atitle><jtitle>Frontiers in molecular biosciences</jtitle><addtitle>Front Mol Biosci</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>2</volume><spage>37</spage><epage>37</epage><pages>37-37</pages><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states-found in all phytochromes studied, albeit with different relative contributions-differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>26217669</pmid><doi>10.3389/fmolb.2015.00037</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-889X
ispartof Frontiers in molecular biosciences, 2015-07, Vol.2, p.37-37
issn 2296-889X
2296-889X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cd92c4e7b04c450b901440de59cae41f
source Open Access: PubMed Central
subjects Hydrogen Bonding
isomerization
Physics
Phytochrome
quantum chemical calculations
Structural heterogeneity
tetrapyrrole
title Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20heterogeneity%20of%20the%20Pfr%20chromophore%20in%20plant%20and%20cyanobacterial%20phytochromes&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Velazquez%20Escobar,%20Francisco&rft.date=2015-07-10&rft.volume=2&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2015.00037&rft_dat=%3Cproquest_doaj_%3E1700106358%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-1fb7b7394fe063a2fc8967ff37b58040e30418ff57a9e4a85383f6a817009a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1700106358&rft_id=info:pmid/26217669&rfr_iscdi=true