Loading…

Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection

Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles. As battery failures are often associated with mechanical‐thermal coupled behaviors, protective shielding material...

Full description

Saved in:
Bibliographic Details
Published in:Carbon energy 2023-12, Vol.5 (12), p.n/a
Main Authors: Du, Fengyin, Jin, Zuquan, Yang, Ruizhe, Hao, Menglong, Wang, Jiawei, Xu, Gang, Zuo, Wenqiang, Geng, Zifan, Pan, Hao, Li, Tian, Zhang, Wei, She, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823
cites cdi_FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823
container_end_page n/a
container_issue 12
container_start_page
container_title Carbon energy
container_volume 5
creator Du, Fengyin
Jin, Zuquan
Yang, Ruizhe
Hao, Menglong
Wang, Jiawei
Xu, Gang
Zuo, Wenqiang
Geng, Zifan
Pan, Hao
Li, Tian
Zhang, Wei
She, Wei
description Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles. As battery failures are often associated with mechanical‐thermal coupled behaviors, protective shielding materials with excellent mechanical robustness and flame‐retardant properties are highly desired to mitigate thermal runaway. However, most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse, which is one of the most critical scenarios with catastrophic consequences. Here, inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains (referred as CSH wood). The versatile protective material CSH wood demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa in the axial direction), negative Poisson's ratio (−0.15), remarkable toughness (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1 in the radial direction), and excellent fire retardancy (UL94‐V0). When applied as a protective cover or a protective layer within battery packages, the tough CSH wood can resist high‐impact load and block heat diffusion to block or delay the spread of fire, therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions. This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. Inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains. The versatile protective material demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa), negative Poisson's ratio (−0.15), remarkable energy dissipation (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1), and excellent fire retardancy (UL94‐V0).
doi_str_mv 10.1002/cey2.353
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cd9387c94f014d87aedaf656f1fb21d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd9387c94f014d87aedaf656f1fb21d6</doaj_id><sourcerecordid>CEY2353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823</originalsourceid><addsrcrecordid>eNp1kc9qGzEQh5eQQkwS6CPo1lw21R9Lu3ssxk0ChvbgHHISY2nkKOyujCTX7K3kCfKMfZLKdSi99DQzPz4-GH5V9ZHRW0Yp_2xw4rdCirNqxpVo6k6o9vyf_aK6TumFFpQ1jPJuVr2unzEO0PcT8WPa95D9uCUwWuJ8xF8_3yJmiBbGTDY-lHvwgzck5bg3eR-hJyYMu5B8xkQOPj8TICNui-YHku_BpxTGT4nEEgTiQiQbyBnjRHYxZDQlHa-qDw76hNfv87J6_LpcL-7r1be7h8WXVW2EkqJuOistWKW6ZgOGW5SUS2UQlJSOtaxxc2kYUDSIovzXcEkRoe1a42jbcnFZPZy8NsCL3kU_QJx0AK__BCFuNcTsTY_a2E60jenmjrK5bRtAC05J5ZjbcGZVcd2cXCaGlCK6vz5G9bEKfaxClyoKWp_Qg-9x-i-nF8snfuR_Ax4Fj8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Du, Fengyin ; Jin, Zuquan ; Yang, Ruizhe ; Hao, Menglong ; Wang, Jiawei ; Xu, Gang ; Zuo, Wenqiang ; Geng, Zifan ; Pan, Hao ; Li, Tian ; Zhang, Wei ; She, Wei</creator><creatorcontrib>Du, Fengyin ; Jin, Zuquan ; Yang, Ruizhe ; Hao, Menglong ; Wang, Jiawei ; Xu, Gang ; Zuo, Wenqiang ; Geng, Zifan ; Pan, Hao ; Li, Tian ; Zhang, Wei ; She, Wei</creatorcontrib><description>Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles. As battery failures are often associated with mechanical‐thermal coupled behaviors, protective shielding materials with excellent mechanical robustness and flame‐retardant properties are highly desired to mitigate thermal runaway. However, most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse, which is one of the most critical scenarios with catastrophic consequences. Here, inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains (referred as CSH wood). The versatile protective material CSH wood demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa in the axial direction), negative Poisson's ratio (−0.15), remarkable toughness (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1 in the radial direction), and excellent fire retardancy (UL94‐V0). When applied as a protective cover or a protective layer within battery packages, the tough CSH wood can resist high‐impact load and block heat diffusion to block or delay the spread of fire, therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions. This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. Inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains. The versatile protective material demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa), negative Poisson's ratio (−0.15), remarkable energy dissipation (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1), and excellent fire retardancy (UL94‐V0).</description><identifier>ISSN: 2637-9368</identifier><identifier>EISSN: 2637-9368</identifier><identifier>DOI: 10.1002/cey2.353</identifier><language>eng</language><publisher>Wiley</publisher><subject>battery protection ; negative Poisson's ratio ; thermal insulation ; toughness ; wood‐inspired materials</subject><ispartof>Carbon energy, 2023-12, Vol.5 (12), p.n/a</ispartof><rights>2023 The Authors. published by Wenzhou University and John Wiley &amp; Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823</citedby><cites>FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823</cites><orcidid>0000-0002-4700-2658 ; 0000-0002-6959-1625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcey2.353$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcey2.353$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,46027,46451</link.rule.ids></links><search><creatorcontrib>Du, Fengyin</creatorcontrib><creatorcontrib>Jin, Zuquan</creatorcontrib><creatorcontrib>Yang, Ruizhe</creatorcontrib><creatorcontrib>Hao, Menglong</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Zuo, Wenqiang</creatorcontrib><creatorcontrib>Geng, Zifan</creatorcontrib><creatorcontrib>Pan, Hao</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>She, Wei</creatorcontrib><title>Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection</title><title>Carbon energy</title><description>Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles. As battery failures are often associated with mechanical‐thermal coupled behaviors, protective shielding materials with excellent mechanical robustness and flame‐retardant properties are highly desired to mitigate thermal runaway. However, most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse, which is one of the most critical scenarios with catastrophic consequences. Here, inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains (referred as CSH wood). The versatile protective material CSH wood demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa in the axial direction), negative Poisson's ratio (−0.15), remarkable toughness (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1 in the radial direction), and excellent fire retardancy (UL94‐V0). When applied as a protective cover or a protective layer within battery packages, the tough CSH wood can resist high‐impact load and block heat diffusion to block or delay the spread of fire, therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions. This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. Inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains. The versatile protective material demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa), negative Poisson's ratio (−0.15), remarkable energy dissipation (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1), and excellent fire retardancy (UL94‐V0).</description><subject>battery protection</subject><subject>negative Poisson's ratio</subject><subject>thermal insulation</subject><subject>toughness</subject><subject>wood‐inspired materials</subject><issn>2637-9368</issn><issn>2637-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc9qGzEQh5eQQkwS6CPo1lw21R9Lu3ssxk0ChvbgHHISY2nkKOyujCTX7K3kCfKMfZLKdSi99DQzPz4-GH5V9ZHRW0Yp_2xw4rdCirNqxpVo6k6o9vyf_aK6TumFFpQ1jPJuVr2unzEO0PcT8WPa95D9uCUwWuJ8xF8_3yJmiBbGTDY-lHvwgzck5bg3eR-hJyYMu5B8xkQOPj8TICNui-YHku_BpxTGT4nEEgTiQiQbyBnjRHYxZDQlHa-qDw76hNfv87J6_LpcL-7r1be7h8WXVW2EkqJuOistWKW6ZgOGW5SUS2UQlJSOtaxxc2kYUDSIovzXcEkRoe1a42jbcnFZPZy8NsCL3kU_QJx0AK__BCFuNcTsTY_a2E60jenmjrK5bRtAC05J5ZjbcGZVcd2cXCaGlCK6vz5G9bEKfaxClyoKWp_Qg-9x-i-nF8snfuR_Ax4Fj8w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Du, Fengyin</creator><creator>Jin, Zuquan</creator><creator>Yang, Ruizhe</creator><creator>Hao, Menglong</creator><creator>Wang, Jiawei</creator><creator>Xu, Gang</creator><creator>Zuo, Wenqiang</creator><creator>Geng, Zifan</creator><creator>Pan, Hao</creator><creator>Li, Tian</creator><creator>Zhang, Wei</creator><creator>She, Wei</creator><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4700-2658</orcidid><orcidid>https://orcid.org/0000-0002-6959-1625</orcidid></search><sort><creationdate>202312</creationdate><title>Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection</title><author>Du, Fengyin ; Jin, Zuquan ; Yang, Ruizhe ; Hao, Menglong ; Wang, Jiawei ; Xu, Gang ; Zuo, Wenqiang ; Geng, Zifan ; Pan, Hao ; Li, Tian ; Zhang, Wei ; She, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>battery protection</topic><topic>negative Poisson's ratio</topic><topic>thermal insulation</topic><topic>toughness</topic><topic>wood‐inspired materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Fengyin</creatorcontrib><creatorcontrib>Jin, Zuquan</creatorcontrib><creatorcontrib>Yang, Ruizhe</creatorcontrib><creatorcontrib>Hao, Menglong</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Zuo, Wenqiang</creatorcontrib><creatorcontrib>Geng, Zifan</creatorcontrib><creatorcontrib>Pan, Hao</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>She, Wei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Fengyin</au><au>Jin, Zuquan</au><au>Yang, Ruizhe</au><au>Hao, Menglong</au><au>Wang, Jiawei</au><au>Xu, Gang</au><au>Zuo, Wenqiang</au><au>Geng, Zifan</au><au>Pan, Hao</au><au>Li, Tian</au><au>Zhang, Wei</au><au>She, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection</atitle><jtitle>Carbon energy</jtitle><date>2023-12</date><risdate>2023</risdate><volume>5</volume><issue>12</issue><epage>n/a</epage><issn>2637-9368</issn><eissn>2637-9368</eissn><abstract>Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles. As battery failures are often associated with mechanical‐thermal coupled behaviors, protective shielding materials with excellent mechanical robustness and flame‐retardant properties are highly desired to mitigate thermal runaway. However, most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse, which is one of the most critical scenarios with catastrophic consequences. Here, inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains (referred as CSH wood). The versatile protective material CSH wood demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa in the axial direction), negative Poisson's ratio (−0.15), remarkable toughness (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1 in the radial direction), and excellent fire retardancy (UL94‐V0). When applied as a protective cover or a protective layer within battery packages, the tough CSH wood can resist high‐impact load and block heat diffusion to block or delay the spread of fire, therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions. This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. Inspired by wood, we have developed an effective approach to engineer a hierarchical nanocomposite via self‐assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains. The versatile protective material demonstrates an unprecedented combination of light weight (0.018 g cm−3), high stiffness (204 MPa), negative Poisson's ratio (−0.15), remarkable energy dissipation (6.67 × 105 J m−3), superior thermal insulation (0.0204 W m−1 K−1), and excellent fire retardancy (UL94‐V0).</abstract><pub>Wiley</pub><doi>10.1002/cey2.353</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4700-2658</orcidid><orcidid>https://orcid.org/0000-0002-6959-1625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-9368
ispartof Carbon energy, 2023-12, Vol.5 (12), p.n/a
issn 2637-9368
2637-9368
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cd9387c94f014d87aedaf656f1fb21d6
source Wiley Online Library Open Access; Publicly Available Content Database
subjects battery protection
negative Poisson's ratio
thermal insulation
toughness
wood‐inspired materials
title Thermally insulating and fire‐retardant bio‐mimic structural composites with a negative Poisson's ratio for battery protection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20insulating%20and%20fire%E2%80%90retardant%20bio%E2%80%90mimic%20structural%20composites%20with%20a%20negative%20Poisson's%20ratio%20for%20battery%20protection&rft.jtitle=Carbon%20energy&rft.au=Du,%20Fengyin&rft.date=2023-12&rft.volume=5&rft.issue=12&rft.epage=n/a&rft.issn=2637-9368&rft.eissn=2637-9368&rft_id=info:doi/10.1002/cey2.353&rft_dat=%3Cwiley_doaj_%3ECEY2353%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3653-79d5dad6697bac2de50256cea655f1817f45c1a0ecee32177250eea898cf08823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true