Loading…
Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles
Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal...
Saved in:
Published in: | Energies (Basel) 2020-10, Vol.13 (20), p.5440 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal management system can consume up to 84% of the battery capacity. This study proposes a model-based approach to design an energy-efficient control strategy for heating electric vehicles, considering the entire climate control system at different ambient conditions. Specifically, the study aims at reducing the energy demand of the compressor and water pumps when operating in heat pump mode. At this scope, the climate control system of the reference vehicle is modelled and validated, enabling a system efficiency analysis in different operating points. Based on the system performance assessment, the optimized operating strategy for the compressor and the water pumps is elaborated and the results show that the demand-based control achieves up to 34% energy reduction when compared to the standard control. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13205440 |