Loading…
Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles
Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal...
Saved in:
Published in: | Energies (Basel) 2020-10, Vol.13 (20), p.5440 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03 |
container_end_page | |
container_issue | 20 |
container_start_page | 5440 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Dvorak, Dominik Basciotti, Daniele Gellai, Imre |
description | Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal management system can consume up to 84% of the battery capacity. This study proposes a model-based approach to design an energy-efficient control strategy for heating electric vehicles, considering the entire climate control system at different ambient conditions. Specifically, the study aims at reducing the energy demand of the compressor and water pumps when operating in heat pump mode. At this scope, the climate control system of the reference vehicle is modelled and validated, enabling a system efficiency analysis in different operating points. Based on the system performance assessment, the optimized operating strategy for the compressor and the water pumps is elaborated and the results show that the demand-based control achieves up to 34% energy reduction when compared to the standard control. |
doi_str_mv | 10.3390/en13205440 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cda579b8e19a4f10980e5b303733a709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cda579b8e19a4f10980e5b303733a709</doaj_id><sourcerecordid>2535588000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03</originalsourceid><addsrcrecordid>eNpNkcFOwzAMhiMEEtPYhSeIxA2pkMRJ0x5hG2zSpCEEXKM0dUenrilJd-Dt6RgCfLFl2Z9_-SfkkrMbgJzdYstBMCUlOyEjnudpwpmG03_1OZnEuGVDAHAAGJHnGe5sWyb3NmJJp77tg2_oDGO9aWnlA51XVe1qbHu6QNvTp_2uo-sOg-1r31Jf0XmDrg-1o2_4XrsG4wU5q2wTcfKTx-T1Yf4yXSSr9eNyerdKHKS8TyRyp5SQLpOZkKlIBaJIIS006gJVKkuneJlpUXJMUQsptWZVgZghL7hjMCbLI7f0dmu6UO9s-DTe1ua74cPG2NAfJBlXWqXzYtjMraw4yzOGqgAGGsBqlg-sqyOrC_5jj7E3W78P7SDfCAVKZdnhZ2NyfZxywccYsPq9ypk5WGD-LIAvgrB1-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535588000</pqid></control><display><type>article</type><title>Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles</title><source>Publicly Available Content Database</source><creator>Dvorak, Dominik ; Basciotti, Daniele ; Gellai, Imre</creator><creatorcontrib>Dvorak, Dominik ; Basciotti, Daniele ; Gellai, Imre</creatorcontrib><description>Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal management system can consume up to 84% of the battery capacity. This study proposes a model-based approach to design an energy-efficient control strategy for heating electric vehicles, considering the entire climate control system at different ambient conditions. Specifically, the study aims at reducing the energy demand of the compressor and water pumps when operating in heat pump mode. At this scope, the climate control system of the reference vehicle is modelled and validated, enabling a system efficiency analysis in different operating points. Based on the system performance assessment, the optimized operating strategy for the compressor and the water pumps is elaborated and the results show that the demand-based control achieves up to 34% energy reduction when compared to the standard control.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13205440</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air conditioning ; Control systems ; Demand ; demand-based control ; Design optimization ; efficiency ; Electric vehicles ; Energy consumption ; Energy demand ; Energy efficiency ; Heat ; Heat exchangers ; heat pump ; Heat pumps ; Heat recovery systems ; Heating ; HVAC ; Hydrologic cycle ; Investigations ; Load ; modelling and simulation ; operating strategy ; Performance assessment ; Powertrain ; Simulation</subject><ispartof>Energies (Basel), 2020-10, Vol.13 (20), p.5440</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03</citedby><cites>FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03</cites><orcidid>0000-0003-2856-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535588000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535588000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dvorak, Dominik</creatorcontrib><creatorcontrib>Basciotti, Daniele</creatorcontrib><creatorcontrib>Gellai, Imre</creatorcontrib><title>Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles</title><title>Energies (Basel)</title><description>Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal management system can consume up to 84% of the battery capacity. This study proposes a model-based approach to design an energy-efficient control strategy for heating electric vehicles, considering the entire climate control system at different ambient conditions. Specifically, the study aims at reducing the energy demand of the compressor and water pumps when operating in heat pump mode. At this scope, the climate control system of the reference vehicle is modelled and validated, enabling a system efficiency analysis in different operating points. Based on the system performance assessment, the optimized operating strategy for the compressor and the water pumps is elaborated and the results show that the demand-based control achieves up to 34% energy reduction when compared to the standard control.</description><subject>Air conditioning</subject><subject>Control systems</subject><subject>Demand</subject><subject>demand-based control</subject><subject>Design optimization</subject><subject>efficiency</subject><subject>Electric vehicles</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy efficiency</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>heat pump</subject><subject>Heat pumps</subject><subject>Heat recovery systems</subject><subject>Heating</subject><subject>HVAC</subject><subject>Hydrologic cycle</subject><subject>Investigations</subject><subject>Load</subject><subject>modelling and simulation</subject><subject>operating strategy</subject><subject>Performance assessment</subject><subject>Powertrain</subject><subject>Simulation</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFOwzAMhiMEEtPYhSeIxA2pkMRJ0x5hG2zSpCEEXKM0dUenrilJd-Dt6RgCfLFl2Z9_-SfkkrMbgJzdYstBMCUlOyEjnudpwpmG03_1OZnEuGVDAHAAGJHnGe5sWyb3NmJJp77tg2_oDGO9aWnlA51XVe1qbHu6QNvTp_2uo-sOg-1r31Jf0XmDrg-1o2_4XrsG4wU5q2wTcfKTx-T1Yf4yXSSr9eNyerdKHKS8TyRyp5SQLpOZkKlIBaJIIS006gJVKkuneJlpUXJMUQsptWZVgZghL7hjMCbLI7f0dmu6UO9s-DTe1ua74cPG2NAfJBlXWqXzYtjMraw4yzOGqgAGGsBqlg-sqyOrC_5jj7E3W78P7SDfCAVKZdnhZ2NyfZxywccYsPq9ypk5WGD-LIAvgrB1-A</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Dvorak, Dominik</creator><creator>Basciotti, Daniele</creator><creator>Gellai, Imre</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2856-5882</orcidid></search><sort><creationdate>20201019</creationdate><title>Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles</title><author>Dvorak, Dominik ; Basciotti, Daniele ; Gellai, Imre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioning</topic><topic>Control systems</topic><topic>Demand</topic><topic>demand-based control</topic><topic>Design optimization</topic><topic>efficiency</topic><topic>Electric vehicles</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy efficiency</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>heat pump</topic><topic>Heat pumps</topic><topic>Heat recovery systems</topic><topic>Heating</topic><topic>HVAC</topic><topic>Hydrologic cycle</topic><topic>Investigations</topic><topic>Load</topic><topic>modelling and simulation</topic><topic>operating strategy</topic><topic>Performance assessment</topic><topic>Powertrain</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvorak, Dominik</creatorcontrib><creatorcontrib>Basciotti, Daniele</creatorcontrib><creatorcontrib>Gellai, Imre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvorak, Dominik</au><au>Basciotti, Daniele</au><au>Gellai, Imre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles</atitle><jtitle>Energies (Basel)</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>13</volume><issue>20</issue><spage>5440</spage><pages>5440-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Thermal management systems of passenger vehicles are fundamental to provide adequate cabin thermal comfort. However, for battery electric vehicles they can use a significant amount of battery energy and thus reduce the real driving range. Indeed, when heating or cooling the vehicle cabin the thermal management system can consume up to 84% of the battery capacity. This study proposes a model-based approach to design an energy-efficient control strategy for heating electric vehicles, considering the entire climate control system at different ambient conditions. Specifically, the study aims at reducing the energy demand of the compressor and water pumps when operating in heat pump mode. At this scope, the climate control system of the reference vehicle is modelled and validated, enabling a system efficiency analysis in different operating points. Based on the system performance assessment, the optimized operating strategy for the compressor and the water pumps is elaborated and the results show that the demand-based control achieves up to 34% energy reduction when compared to the standard control.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13205440</doi><orcidid>https://orcid.org/0000-0003-2856-5882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-10, Vol.13 (20), p.5440 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cda579b8e19a4f10980e5b303733a709 |
source | Publicly Available Content Database |
subjects | Air conditioning Control systems Demand demand-based control Design optimization efficiency Electric vehicles Energy consumption Energy demand Energy efficiency Heat Heat exchangers heat pump Heat pumps Heat recovery systems Heating HVAC Hydrologic cycle Investigations Load modelling and simulation operating strategy Performance assessment Powertrain Simulation |
title | Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demand-Based%20Control%20Design%20for%20Efficient%20Heat%20Pump%20Operation%20of%20Electric%20Vehicles&rft.jtitle=Energies%20(Basel)&rft.au=Dvorak,%20Dominik&rft.date=2020-10-19&rft.volume=13&rft.issue=20&rft.spage=5440&rft.pages=5440-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13205440&rft_dat=%3Cproquest_doaj_%3E2535588000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-4e1c5524c848246262ee2636b7e7be564dc51d872d1e6e7244770fbee8e1b1c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535588000&rft_id=info:pmid/&rfr_iscdi=true |