Loading…
Insights into the Synergistic Removal of Copper(II), Cadmium(II), and Chromium(III) Ions Using Modified Chitosan Based on Schiff Bases‑g‑poly(acrylonitrile)
Chitosan has received broad consideration as an adsorbent for all pollutants because of its low cost and great adsorption potential. However, its shortcomings, including sensitivity to pH, poor thermal stability, and poor mechanical strength, limit its use. The functional groups of chitosan can be m...
Saved in:
Published in: | ACS omega 2022-11, Vol.7 (46), p.42012-42026 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chitosan has received broad consideration as an adsorbent for all pollutants because of its low cost and great adsorption potential. However, its shortcomings, including sensitivity to pH, poor thermal stability, and poor mechanical strength, limit its use. The functional groups of chitosan can be modified to enhance its performance by the grafting technique and Schiff base modification. The grafting process used acrylonitrile (Ch-g-PAN) as a monomer and potassium persulfate as an initiator. After that, the modification via preparation of the Schiff base reaction using salicylaldehyde (Ch-g-Sch I) and P-anisaldehyde (Ch-g-Sch II) was carried out. The synthesized copolymers were detailed and characterized through several spectroscopic and microscopic techniques including infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. In addition, Ch-g-Sch I and Ch-g-Sch II were applied in the removal of different metal ions such as Cu2+, Cd2+, and Cr3+. The maximum adsorption capacity of Ch-g-Sch I for Cd2+ was 183.7 mg g–1 in 24 h, while in the case of Ch-g-Sch II, the maximum adsorption capacity for Cd2+ was improved to 322.9 mg g–1 for the same time. Moreover, adsorption thermodynamic analysis displays that the all ion adsorption process was not random and the pseudo-second-order model fitted with experimental results. Finally, Ch-g-Sch I and Ch-g-Sch II were applied as designs for industrial wastewater treatment with significant efficiency. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c03809 |