Loading…

Association of Polybrominated Diphenyl Ethers (PBDEs) and Polychlorinated Biphenyls (PCBs) with Hyperthyroidism in Domestic Felines, Sentinels for Thyroid Hormone Disruption

Hyperthyroidism is the most common endocrine disorder observed in domestic felines; however, its etiology is largely unknown. Two classes of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known to interfere with thyroid hormone (TH) sig...

Full description

Saved in:
Bibliographic Details
Published in:BMC veterinary research 2017-05, Vol.13 (1), p.120-12, Article 120
Main Authors: Walter, Kyla M, Lin, Yan-Ping, Kass, Philip H, Puschner, Birgit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperthyroidism is the most common endocrine disorder observed in domestic felines; however, its etiology is largely unknown. Two classes of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known to interfere with thyroid hormone (TH) signaling and regulation; thus, it is postulated that they contribute to the etiopathogenesis of feline hyperthyroidism and pose a risk to humans and other species. In this case-control study, the concentrations of 13 PBDE and 11 PCB congeners were measured by gas chromatography mass spectrometry in serum or plasma samples from 20 hyperthyroid and 31 control cats in order to investigate the association between concentration of PBDE and PCB congeners and feline hyperthyroidism. Logistic regression analysis was used to determine whether elevated concentrations of individual congeners were associated with a higher risk of feline hyperthyroidism. Hyperthyroid cats had higher concentrations of four PBDE congeners (BDE17, BDE100, BDE47, and BDE49) and five PCB congeners (PCB131, PCB153, PCB174, PCB180, and PCB196), compared to control cats. In addition, the sum of both PBDE and PCB congener concentrations were elevated in the hyperthyroid group compared to control cats; however, only the increased PCB concentrations were statistically significant. The sum total PBDE concentrations in our feline samples were approximately 50 times greater than concentrations previously reported in human populations from a geographically similar area, whereas sum total PCB concentrations were comparable to those previously reported in humans. These observational findings support the hypothesis that PBDEs and PCBs may contribute to the etiopathogenesis of hyperthyroidism in felines. As domestic house cats are often exposed to higher concentrations of PBDEs than humans, they may serve as sentinels for the risk of TH disruption that these pollutants pose to humans and other species.
ISSN:1746-6148
1746-6148
DOI:10.1186/s12917-017-1031-6