Loading…
Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper
This paper presents the fabrication of a fiber Bragg grating (FBG)-based Fabry–Perot (FP) structure (7 mm total length) in an adiabatic fiber taper, investigates its strain and temperature characteristics, and compares the sensing characteristics with a standard polyimide coated FBG sensor. Firstly,...
Saved in:
Published in: | Applied sciences 2020-02, Vol.10 (3), p.1069 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the fabrication of a fiber Bragg grating (FBG)-based Fabry–Perot (FP) structure (7 mm total length) in an adiabatic fiber taper, investigates its strain and temperature characteristics, and compares the sensing characteristics with a standard polyimide coated FBG sensor. Firstly, a simulation of the said structure is presented, followed by the fabrication of an adiabatic fiber taper having the outer diameter reduced to 70 μ m (core diameter to 4.7 μ m). Next, the sensing structure, composed of two identical uniform FBG spaced apart by a small gap, is directly inscribed point-by-point using infrared femtosecond laser (fs-laser) micromachining. Lastly, the strain and temperature behavior for a range up to 3400 μ ε and 225 ° C, respectively, are investigated for the fabricated sensor and the FBG, and compared. The fabricated sensor attains a higher strain sensitivity (2.32 pm/ μ ε ) than the FBG (0.73 pm/ μ ε ), while both the sensors experience similar sensitivity to temperature (8.85 pm/ ° C). The potential applications of such sensors include continuous health monitoring where precise strain detection is required. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10031069 |