Loading…

TWIST mediates resistance to paclitaxel by regulating Akt and Bcl-2 expression in gastric cancer cells

The transcription factor TWIST has been reported to play an important role in tumor progression as well as resistance to anti-cancer drugs. However, the role of TWIST in gastric cancer and the molecular mechanisms by which this protein elicits drug resistance remain poorly understood. We transfected...

Full description

Saved in:
Bibliographic Details
Published in:Tumor biology 2017-10, Vol.39 (10), p.1010428317722070
Main Authors: Kwon, Chae Hwa, Park, Hye Ji, Choi, Yuri, Won, Yeo Jin, Lee, Seon Jin, Park, Do Youn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transcription factor TWIST has been reported to play an important role in tumor progression as well as resistance to anti-cancer drugs. However, the role of TWIST in gastric cancer and the molecular mechanisms by which this protein elicits drug resistance remain poorly understood. We transfected gastric cancer cell lines with lentiviral vector to generate TWIST-overexpressing stable cell lines. Our study showed that overexpression of TWIST not only increased cell migration and invasion but also induced resistance to the anti-cancer drug paclitaxel in gastric cancer. Paclitaxel increased gastric cancer cell death in dose-dependent manner; this was decreased following TWIST overexpression. Furthermore, treatment with paclitaxel decreased Akt phosphorylation and Bcl-2 expression, whereas these effects were suppressed by TWIST overexpression. Treatment of cells with Akt inhibitor or small interfering RNA targeting for Bcl-2 led to increased paclitaxel-induced cell death, indicating that TWIST elicits resistance to paclitaxel via the regulation of the Akt and Bcl-2 pathway. Our results suggest an underlying mechanism for TWIST-mediated paclitaxel resistance and indicate that TWIST represents a potential target for overcoming paclitaxel resistance in gastric cancer cells.
ISSN:1010-4283
1423-0380
DOI:10.1177/1010428317722070