Loading…

Episodic transport of discrete magma batches beneath Aso volcano

Magma ascent, storage, and discharge in the trans-crustal magmatic system are keys to long-term volcanic output and short-term eruption dynamics. How a distinct magma batch transports from a deep reservoir(s) to a pre-eruptive storage pool with eruptible magma remains elusive. Here we show that repe...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-09, Vol.12 (1), p.5555-5555, Article 5555
Main Authors: Niu, Jieming, Song, Teh-Ru Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magma ascent, storage, and discharge in the trans-crustal magmatic system are keys to long-term volcanic output and short-term eruption dynamics. How a distinct magma batch transports from a deep reservoir(s) to a pre-eruptive storage pool with eruptible magma remains elusive. Here we show that repetitive very-long-period signals (VLPs) beneath the Aso volcano are preceded by a short-lived (~50–100 s), synchronous deformation event ~3 km apart from the VLP source. Source mechanism of a major volumetric component (~50–440 m 3 per event) and a minor low-angle normal-fault component, together with petrological evidence, suggests episodic transport of discrete magma batches from an over-pressured chamber roof to a pre-eruptive storage pool near the brittle-ductile transition regime. Magma ascent velocity, decompression rate, and cumulative magma output deduced from recurrent deformation events before recent 2014 and 2016 eruptions reconcile retrospective observations of the eruption style, tephra fallouts, and plume heights, promising real-time evaluation of upcoming eruptions. Repetitive shallow resonances provide a pathway to unravelling episodic magma transport deep in the magma plumbing system. Episodic deformation of ~1 nanoradian over ~100 s beneath Aso volcano potentially provides a link between long-term volcanic output and short-term eruption dynamics.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25883-y