Loading…

Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation

Partial oxidation of methane (POM) is a prominent pathway for syngas production, wherein the hydrogen in syngas product can be recovered directly from the reaction system using a hydrogen (H2)-permeable membrane. Enhancing the efficiency of this H2 separation process is a current major challenge. In...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2023-09, Vol.11 (9), p.360
Main Authors: Hei, Yuepeng, Lu, Zuojun, Li, Claudia, Song, Jian, Meng, Bo, Yang, Naitao, Kawi, Sibudjing, Sunarso, Jaka, Tan, Xiaoyao, Liu, Shaomin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293
cites cdi_FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293
container_end_page
container_issue 9
container_start_page 360
container_title Inorganics
container_volume 11
creator Hei, Yuepeng
Lu, Zuojun
Li, Claudia
Song, Jian
Meng, Bo
Yang, Naitao
Kawi, Sibudjing
Sunarso, Jaka
Tan, Xiaoyao
Liu, Shaomin
description Partial oxidation of methane (POM) is a prominent pathway for syngas production, wherein the hydrogen in syngas product can be recovered directly from the reaction system using a hydrogen (H2)-permeable membrane. Enhancing the efficiency of this H2 separation process is a current major challenge. In this study, Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their H2 permeation fluxes. Firstly, YDC and BCY ceramic powders were synthesized using the sol-gel method, followed by the fabrication of YDC-BCY dual-phase ceramic HF membranes using a combined phase inversion–sintering process. Characterization using SEM, powder XRD, EDS, and electrical conductivity tests confirmed the phases of the prepared powders and HF membranes. Well-structured YDC and BCY powders with uniform particle sizes were obtained after calcination at 900 °C. With the addition of 1 wt.% Co2O3 as a sintering aid, the YDC-BCY dual-phase HF membrane achieved densification after sintering at 1500 °C. Subsequently, the influences of sweep gas composition and temperature on the hydrogen permeation of the YDC-BCY HF membranes with YDC/BCY molar ratios of 2:1, 3:1, and 4:1 were investigated. At 1000 °C and a sweep-gas flow rate of 120 mL·min−1, the YDC-BCY HF membrane with a YDC/BCY molar ratio of 4:1 exhibited a peak hydrogen flux of 0.30 mL·min−1 cm−2. There is significant potential for improving the hydrogen permeation of dual-phase ceramic membranes, with future efforts aimed at reducing dense layer thickness and enhancing the membrane material’s electronic and proton conductivities.
doi_str_mv 10.3390/inorganics11090360
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce1fb3fd4ebd4e52a245f72a87788edf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce1fb3fd4ebd4e52a245f72a87788edf</doaj_id><sourcerecordid>2869339475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293</originalsourceid><addsrcrecordid>eNplUdtKAzEQXUTBUvsDPi34vHWS7CV51HppoVJBfehTSLKTumW7qUmL9L_8Dr_JaEUFB4aZOQznDGeS5JTAkDEB503n_EJ1jQmEgABWwkHSowzyrKxyOPzTHyeDEJYQQxDGGe8l8xHCkM9hSGc0e3_LLtUvwCKQXm1Vm90_q4Dp2LWte01vGo0-vcOV9qrDkFrn0_Gu9m6BXfqAa-XVpnHdSXJkVRtw8F37ydPN9eNonE1nt5PRxTQzjBebLNeoATW3JdS6zMEaECUjAnQBccLactTCMlIaTqyJYKnBWCWoUASoYP1ksuetnVrKtW9Wyu-kU438AqI1UvlNY1qUBonVzNY56pgFVTQvbEUVryrOo1LkOttzrb172WLYyKXb-i6eLykvRXQ7r4q4RfdbxrsQPNofVQLy8yPy_0fYB6Xnf5s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869339475</pqid></control><display><type>article</type><title>Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation</title><source>ProQuest - Publicly Available Content Database</source><creator>Hei, Yuepeng ; Lu, Zuojun ; Li, Claudia ; Song, Jian ; Meng, Bo ; Yang, Naitao ; Kawi, Sibudjing ; Sunarso, Jaka ; Tan, Xiaoyao ; Liu, Shaomin</creator><creatorcontrib>Hei, Yuepeng ; Lu, Zuojun ; Li, Claudia ; Song, Jian ; Meng, Bo ; Yang, Naitao ; Kawi, Sibudjing ; Sunarso, Jaka ; Tan, Xiaoyao ; Liu, Shaomin</creatorcontrib><description>Partial oxidation of methane (POM) is a prominent pathway for syngas production, wherein the hydrogen in syngas product can be recovered directly from the reaction system using a hydrogen (H2)-permeable membrane. Enhancing the efficiency of this H2 separation process is a current major challenge. In this study, Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their H2 permeation fluxes. Firstly, YDC and BCY ceramic powders were synthesized using the sol-gel method, followed by the fabrication of YDC-BCY dual-phase ceramic HF membranes using a combined phase inversion–sintering process. Characterization using SEM, powder XRD, EDS, and electrical conductivity tests confirmed the phases of the prepared powders and HF membranes. Well-structured YDC and BCY powders with uniform particle sizes were obtained after calcination at 900 °C. With the addition of 1 wt.% Co2O3 as a sintering aid, the YDC-BCY dual-phase HF membrane achieved densification after sintering at 1500 °C. Subsequently, the influences of sweep gas composition and temperature on the hydrogen permeation of the YDC-BCY HF membranes with YDC/BCY molar ratios of 2:1, 3:1, and 4:1 were investigated. At 1000 °C and a sweep-gas flow rate of 120 mL·min−1, the YDC-BCY HF membrane with a YDC/BCY molar ratio of 4:1 exhibited a peak hydrogen flux of 0.30 mL·min−1 cm−2. There is significant potential for improving the hydrogen permeation of dual-phase ceramic membranes, with future efforts aimed at reducing dense layer thickness and enhancing the membrane material’s electronic and proton conductivities.</description><identifier>ISSN: 2304-6740</identifier><identifier>EISSN: 2304-6740</identifier><identifier>DOI: 10.3390/inorganics11090360</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ammonia ; Ceramic powders ; Ceramics ; Cobalt oxides ; Composite materials ; Densification ; dual-phase ; Electrical conductivity ; Electrical resistivity ; Energy consumption ; Gas composition ; Gas flow ; Gases ; Hollow fiber membranes ; Hydrogen ; Hydrogen permeation ; Membrane reactors ; Membrane separation ; Metals ; Oxidation ; Permeability ; Permeation ; phase inversion ; Phase transitions ; POM ; Raw materials ; Separation ; Sintering (powder metallurgy) ; sintering aid ; Sintering aids ; sol-gel ; Sol-gel processes ; syngas ; Synthesis gas ; Thickness</subject><ispartof>Inorganics, 2023-09, Vol.11 (9), p.360</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293</citedby><cites>FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293</cites><orcidid>0000-0002-2033-0328 ; 0000-0002-0710-8423 ; 0000-0002-5234-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869339475/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869339475?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hei, Yuepeng</creatorcontrib><creatorcontrib>Lu, Zuojun</creatorcontrib><creatorcontrib>Li, Claudia</creatorcontrib><creatorcontrib>Song, Jian</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Yang, Naitao</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><creatorcontrib>Sunarso, Jaka</creatorcontrib><creatorcontrib>Tan, Xiaoyao</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><title>Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation</title><title>Inorganics</title><description>Partial oxidation of methane (POM) is a prominent pathway for syngas production, wherein the hydrogen in syngas product can be recovered directly from the reaction system using a hydrogen (H2)-permeable membrane. Enhancing the efficiency of this H2 separation process is a current major challenge. In this study, Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their H2 permeation fluxes. Firstly, YDC and BCY ceramic powders were synthesized using the sol-gel method, followed by the fabrication of YDC-BCY dual-phase ceramic HF membranes using a combined phase inversion–sintering process. Characterization using SEM, powder XRD, EDS, and electrical conductivity tests confirmed the phases of the prepared powders and HF membranes. Well-structured YDC and BCY powders with uniform particle sizes were obtained after calcination at 900 °C. With the addition of 1 wt.% Co2O3 as a sintering aid, the YDC-BCY dual-phase HF membrane achieved densification after sintering at 1500 °C. Subsequently, the influences of sweep gas composition and temperature on the hydrogen permeation of the YDC-BCY HF membranes with YDC/BCY molar ratios of 2:1, 3:1, and 4:1 were investigated. At 1000 °C and a sweep-gas flow rate of 120 mL·min−1, the YDC-BCY HF membrane with a YDC/BCY molar ratio of 4:1 exhibited a peak hydrogen flux of 0.30 mL·min−1 cm−2. There is significant potential for improving the hydrogen permeation of dual-phase ceramic membranes, with future efforts aimed at reducing dense layer thickness and enhancing the membrane material’s electronic and proton conductivities.</description><subject>Ammonia</subject><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Densification</subject><subject>dual-phase</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy consumption</subject><subject>Gas composition</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Hollow fiber membranes</subject><subject>Hydrogen</subject><subject>Hydrogen permeation</subject><subject>Membrane reactors</subject><subject>Membrane separation</subject><subject>Metals</subject><subject>Oxidation</subject><subject>Permeability</subject><subject>Permeation</subject><subject>phase inversion</subject><subject>Phase transitions</subject><subject>POM</subject><subject>Raw materials</subject><subject>Separation</subject><subject>Sintering (powder metallurgy)</subject><subject>sintering aid</subject><subject>Sintering aids</subject><subject>sol-gel</subject><subject>Sol-gel processes</subject><subject>syngas</subject><subject>Synthesis gas</subject><subject>Thickness</subject><issn>2304-6740</issn><issn>2304-6740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUdtKAzEQXUTBUvsDPi34vHWS7CV51HppoVJBfehTSLKTumW7qUmL9L_8Dr_JaEUFB4aZOQznDGeS5JTAkDEB503n_EJ1jQmEgABWwkHSowzyrKxyOPzTHyeDEJYQQxDGGe8l8xHCkM9hSGc0e3_LLtUvwCKQXm1Vm90_q4Dp2LWte01vGo0-vcOV9qrDkFrn0_Gu9m6BXfqAa-XVpnHdSXJkVRtw8F37ydPN9eNonE1nt5PRxTQzjBebLNeoATW3JdS6zMEaECUjAnQBccLactTCMlIaTqyJYKnBWCWoUASoYP1ksuetnVrKtW9Wyu-kU438AqI1UvlNY1qUBonVzNY56pgFVTQvbEUVryrOo1LkOttzrb172WLYyKXb-i6eLykvRXQ7r4q4RfdbxrsQPNofVQLy8yPy_0fYB6Xnf5s</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hei, Yuepeng</creator><creator>Lu, Zuojun</creator><creator>Li, Claudia</creator><creator>Song, Jian</creator><creator>Meng, Bo</creator><creator>Yang, Naitao</creator><creator>Kawi, Sibudjing</creator><creator>Sunarso, Jaka</creator><creator>Tan, Xiaoyao</creator><creator>Liu, Shaomin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2033-0328</orcidid><orcidid>https://orcid.org/0000-0002-0710-8423</orcidid><orcidid>https://orcid.org/0000-0002-5234-7431</orcidid></search><sort><creationdate>20230901</creationdate><title>Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation</title><author>Hei, Yuepeng ; Lu, Zuojun ; Li, Claudia ; Song, Jian ; Meng, Bo ; Yang, Naitao ; Kawi, Sibudjing ; Sunarso, Jaka ; Tan, Xiaoyao ; Liu, Shaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Densification</topic><topic>dual-phase</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy consumption</topic><topic>Gas composition</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Hollow fiber membranes</topic><topic>Hydrogen</topic><topic>Hydrogen permeation</topic><topic>Membrane reactors</topic><topic>Membrane separation</topic><topic>Metals</topic><topic>Oxidation</topic><topic>Permeability</topic><topic>Permeation</topic><topic>phase inversion</topic><topic>Phase transitions</topic><topic>POM</topic><topic>Raw materials</topic><topic>Separation</topic><topic>Sintering (powder metallurgy)</topic><topic>sintering aid</topic><topic>Sintering aids</topic><topic>sol-gel</topic><topic>Sol-gel processes</topic><topic>syngas</topic><topic>Synthesis gas</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hei, Yuepeng</creatorcontrib><creatorcontrib>Lu, Zuojun</creatorcontrib><creatorcontrib>Li, Claudia</creatorcontrib><creatorcontrib>Song, Jian</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Yang, Naitao</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><creatorcontrib>Sunarso, Jaka</creatorcontrib><creatorcontrib>Tan, Xiaoyao</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Inorganics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hei, Yuepeng</au><au>Lu, Zuojun</au><au>Li, Claudia</au><au>Song, Jian</au><au>Meng, Bo</au><au>Yang, Naitao</au><au>Kawi, Sibudjing</au><au>Sunarso, Jaka</au><au>Tan, Xiaoyao</au><au>Liu, Shaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation</atitle><jtitle>Inorganics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><spage>360</spage><pages>360-</pages><issn>2304-6740</issn><eissn>2304-6740</eissn><abstract>Partial oxidation of methane (POM) is a prominent pathway for syngas production, wherein the hydrogen in syngas product can be recovered directly from the reaction system using a hydrogen (H2)-permeable membrane. Enhancing the efficiency of this H2 separation process is a current major challenge. In this study, Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their H2 permeation fluxes. Firstly, YDC and BCY ceramic powders were synthesized using the sol-gel method, followed by the fabrication of YDC-BCY dual-phase ceramic HF membranes using a combined phase inversion–sintering process. Characterization using SEM, powder XRD, EDS, and electrical conductivity tests confirmed the phases of the prepared powders and HF membranes. Well-structured YDC and BCY powders with uniform particle sizes were obtained after calcination at 900 °C. With the addition of 1 wt.% Co2O3 as a sintering aid, the YDC-BCY dual-phase HF membrane achieved densification after sintering at 1500 °C. Subsequently, the influences of sweep gas composition and temperature on the hydrogen permeation of the YDC-BCY HF membranes with YDC/BCY molar ratios of 2:1, 3:1, and 4:1 were investigated. At 1000 °C and a sweep-gas flow rate of 120 mL·min−1, the YDC-BCY HF membrane with a YDC/BCY molar ratio of 4:1 exhibited a peak hydrogen flux of 0.30 mL·min−1 cm−2. There is significant potential for improving the hydrogen permeation of dual-phase ceramic membranes, with future efforts aimed at reducing dense layer thickness and enhancing the membrane material’s electronic and proton conductivities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/inorganics11090360</doi><orcidid>https://orcid.org/0000-0002-2033-0328</orcidid><orcidid>https://orcid.org/0000-0002-0710-8423</orcidid><orcidid>https://orcid.org/0000-0002-5234-7431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-6740
ispartof Inorganics, 2023-09, Vol.11 (9), p.360
issn 2304-6740
2304-6740
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ce1fb3fd4ebd4e52a245f72a87788edf
source ProQuest - Publicly Available Content Database
subjects Ammonia
Ceramic powders
Ceramics
Cobalt oxides
Composite materials
Densification
dual-phase
Electrical conductivity
Electrical resistivity
Energy consumption
Gas composition
Gas flow
Gases
Hollow fiber membranes
Hydrogen
Hydrogen permeation
Membrane reactors
Membrane separation
Metals
Oxidation
Permeability
Permeation
phase inversion
Phase transitions
POM
Raw materials
Separation
Sintering (powder metallurgy)
sintering aid
Sintering aids
sol-gel
Sol-gel processes
syngas
Synthesis gas
Thickness
title Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ce0.8Y0.2O2-%CE%B4-BaCe0.8Y0.2O3-%CE%B4%20Dual-Phase%20Hollow%20Fiber%20Membranes%20for%20Hydrogen%20Separation&rft.jtitle=Inorganics&rft.au=Hei,%20Yuepeng&rft.date=2023-09-01&rft.volume=11&rft.issue=9&rft.spage=360&rft.pages=360-&rft.issn=2304-6740&rft.eissn=2304-6740&rft_id=info:doi/10.3390/inorganics11090360&rft_dat=%3Cproquest_doaj_%3E2869339475%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-4beb0eb8f60db640fc0963190b5040fedf8eb9f316c81fc5046b0cfa929a10293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869339475&rft_id=info:pmid/&rfr_iscdi=true