Loading…

Hormesis of glyceollin I, an induced phytoalexin from soybean, on budding yeast chronological lifespan extension

Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2014-01, Vol.19 (1), p.568-580
Main Authors: Liu, Yuancai, Wu, Ziyun, Feng, Shengbao, Yang, Xuena, Huang, Dejian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions. Here we show that glyceollin I has hormesis and extends yeast life span at low (nM) doses in a calorie restriction (CR)-dependent manner, while it reduces life span and inhibits yeast cell proliferation at higher (μM) doses. In contrast, the other two isomers (glyceollin II and III) cannot extend yeast life span and only show life span reduction and antiproliferation at higher doses. Our results in anti-aging activity indicate that glyceollin I might be a promising calorie restriction mimetic candidate, and the high content of glyceollins could improve the bioactivity of soybean as functional food ingredients.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules19010568