Loading…

Label-Free Imaging of Single Nanoparticles Using Total Internal Reflection-Based Leakage Radiation Microscopy

Label-free, fast, and single nanoparticle detection is demanded for the in situ monitoring of nano-pollutants in the environment, which have potential toxic effects on human health. We present the label-free imaging of single nanoparticles by using total internal reflection (TIR)-based leakage radia...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-03, Vol.10 (4), p.615
Main Authors: Jiang, Liwen, Sun, Xuqing, Liu, Hongyao, Wei, Ruxue, Wang, Xue, Wang, Chang, Lu, Xinchao, Huang, Chengjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Label-free, fast, and single nanoparticle detection is demanded for the in situ monitoring of nano-pollutants in the environment, which have potential toxic effects on human health. We present the label-free imaging of single nanoparticles by using total internal reflection (TIR)-based leakage radiation microscopy. We illustrate the imaging of both single polystyrene (PS) and Au nanospheres with diameters as low as 100 and 30 nm, respectively. As both far-field imaging and simulated near-field electric field intensity distribution at the interface showed the same characteristics, i.e., the localized enhancement and interference of TIR evanescent waves, we confirmed the leakage radiation, transforming the near-field distribution to far-field for fast imaging. The localized enhancement of single PS and Au nanospheres were compared. We also illustrate the TIR-based leakage radiation imaging of single polystyrene nanospheres with different incident polarizations. The TIR-based leakage radiation microscopy method is a competitive alternative for the fast, in situ, label-free imaging of nano-pollutants.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10040615