Loading…
MTHFD1 controls DNA methylation in Arabidopsis
DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , r...
Saved in:
Published in: | Nature communications 2016-06, Vol.7 (1), p.11640-13, Article 11640 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 11640 |
container_title | Nature communications |
container_volume | 7 |
creator | Groth, Martin Moissiard, Guillaume Wirtz, Markus Wang, Haifeng Garcia-Salinas, Carolina Ramos-Parra, Perla A. Bischof, Sylvain Feng, Suhua Cokus, Shawn J. John, Amala Smith, Danielle C. Zhai, Jixian Hale, Christopher J. Long, Jeff A. Hell, Ruediger Díaz de la Garza, Rocío I. Jacobsen, Steven E. |
description | DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized
Arabidopsis thaliana
population for expression of
SDCpro-GFP
, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant
mthfd1-1
, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in
mthfd1-1
and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in
Arabidopsis
. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in
mthfd1-1
. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
DNA methylation contributes to transcriptional silencing. Here, Groth
et al.
show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor. |
doi_str_mv | 10.1038/ncomms11640 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e</doaj_id><sourcerecordid>4086843001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</originalsourceid><addsrcrecordid>eNptkctLAzEQh4MoVtSTd1nwqK2ZPDbJRSitj4KPi55Dms3WLbubmmyF_vemtkoFc5mQfHwzww-hM8ADwFRet9Y3TQTIGd5DRwQz6IMgdH_n3kOnMc5xOlSBZOwQ9YggCgTAERo8vT7cjSGzvu2Cr2M2fh5mjeveV7XpKt9mVZsNg5lWhV_EKp6gg9LU0Z1u6zF6u7t9HT30H1_uJ6PhY99yIbs-yQU1gqYiGJG5KCkpqKS4dNwphw1Inpeg7Ho8YwvFGHGs4DkHMS1z6ugxmmy8hTdzvQhVY8JKe1Pp7wcfZtqErrK109YxPJWFzCUrmaG54cAo4SCBOVCwdt1sXIvltHGFdWlTU_-R_v1pq3c985-aKawUp0lwsRUE_7F0sdNzvwxt2l-DUFxRkaJI1OWGssHHGFz52wGwXmeld7JK9PnuUL_sTzIJuNoAMX21Mxd2mv7j-wL3s5vl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795937103</pqid></control><display><type>article</type><title>MTHFD1 controls DNA methylation in Arabidopsis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</creator><creatorcontrib>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</creatorcontrib><description>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized
Arabidopsis thaliana
population for expression of
SDCpro-GFP
, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant
mthfd1-1
, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in
mthfd1-1
and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in
Arabidopsis
. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in
mthfd1-1
. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
DNA methylation contributes to transcriptional silencing. Here, Groth
et al.
show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11640</identifier><identifier>PMID: 27291711</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 631/337/176/1988 ; 631/449/1659 ; 631/45/607/1168 ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cytoplasm - drug effects ; Cytoplasm - metabolism ; Dehydrogenases ; DNA Demethylation ; DNA methylation ; DNA Methylation - genetics ; Epigenesis, Genetic ; Epigenetics ; Folic Acid - metabolism ; Gene Expression Regulation, Plant - drug effects ; Gene Silencing ; Genomes ; Green Fluorescent Proteins - metabolism ; Histones - metabolism ; Homeostasis - drug effects ; Homocysteine ; Humanities and Social Sciences ; Lysine - metabolism ; Metabolism ; Methenyltetrahydrofolate Cyclohydrolase - genetics ; Methenyltetrahydrofolate Cyclohydrolase - metabolism ; Methionine - pharmacology ; Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics ; Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism ; Models, Biological ; multidisciplinary ; Mutation ; Mutation - genetics ; Protein Transport - drug effects ; RNA polymerase ; S-Adenosylmethionine - metabolism ; Science ; Science (multidisciplinary) ; Tetrahydrofolates - pharmacology ; Virology</subject><ispartof>Nature communications, 2016-06, Vol.7 (1), p.11640-13, Article 11640</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</citedby><cites>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</cites><orcidid>0000-0003-0547-5032 ; 0000-0001-7790-4022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1795937103/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1795937103?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27291711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groth, Martin</creatorcontrib><creatorcontrib>Moissiard, Guillaume</creatorcontrib><creatorcontrib>Wirtz, Markus</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Garcia-Salinas, Carolina</creatorcontrib><creatorcontrib>Ramos-Parra, Perla A.</creatorcontrib><creatorcontrib>Bischof, Sylvain</creatorcontrib><creatorcontrib>Feng, Suhua</creatorcontrib><creatorcontrib>Cokus, Shawn J.</creatorcontrib><creatorcontrib>John, Amala</creatorcontrib><creatorcontrib>Smith, Danielle C.</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Hale, Christopher J.</creatorcontrib><creatorcontrib>Long, Jeff A.</creatorcontrib><creatorcontrib>Hell, Ruediger</creatorcontrib><creatorcontrib>Díaz de la Garza, Rocío I.</creatorcontrib><creatorcontrib>Jacobsen, Steven E.</creatorcontrib><title>MTHFD1 controls DNA methylation in Arabidopsis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized
Arabidopsis thaliana
population for expression of
SDCpro-GFP
, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant
mthfd1-1
, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in
mthfd1-1
and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in
Arabidopsis
. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in
mthfd1-1
. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
DNA methylation contributes to transcriptional silencing. Here, Groth
et al.
show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</description><subject>13</subject><subject>631/337/176/1988</subject><subject>631/449/1659</subject><subject>631/45/607/1168</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cytoplasm - drug effects</subject><subject>Cytoplasm - metabolism</subject><subject>Dehydrogenases</subject><subject>DNA Demethylation</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Folic Acid - metabolism</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Silencing</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histones - metabolism</subject><subject>Homeostasis - drug effects</subject><subject>Homocysteine</subject><subject>Humanities and Social Sciences</subject><subject>Lysine - metabolism</subject><subject>Metabolism</subject><subject>Methenyltetrahydrofolate Cyclohydrolase - genetics</subject><subject>Methenyltetrahydrofolate Cyclohydrolase - metabolism</subject><subject>Methionine - pharmacology</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Protein Transport - drug effects</subject><subject>RNA polymerase</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tetrahydrofolates - pharmacology</subject><subject>Virology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctLAzEQh4MoVtSTd1nwqK2ZPDbJRSitj4KPi55Dms3WLbubmmyF_vemtkoFc5mQfHwzww-hM8ADwFRet9Y3TQTIGd5DRwQz6IMgdH_n3kOnMc5xOlSBZOwQ9YggCgTAERo8vT7cjSGzvu2Cr2M2fh5mjeveV7XpKt9mVZsNg5lWhV_EKp6gg9LU0Z1u6zF6u7t9HT30H1_uJ6PhY99yIbs-yQU1gqYiGJG5KCkpqKS4dNwphw1Inpeg7Ho8YwvFGHGs4DkHMS1z6ugxmmy8hTdzvQhVY8JKe1Pp7wcfZtqErrK109YxPJWFzCUrmaG54cAo4SCBOVCwdt1sXIvltHGFdWlTU_-R_v1pq3c985-aKawUp0lwsRUE_7F0sdNzvwxt2l-DUFxRkaJI1OWGssHHGFz52wGwXmeld7JK9PnuUL_sTzIJuNoAMX21Mxd2mv7j-wL3s5vl</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Groth, Martin</creator><creator>Moissiard, Guillaume</creator><creator>Wirtz, Markus</creator><creator>Wang, Haifeng</creator><creator>Garcia-Salinas, Carolina</creator><creator>Ramos-Parra, Perla A.</creator><creator>Bischof, Sylvain</creator><creator>Feng, Suhua</creator><creator>Cokus, Shawn J.</creator><creator>John, Amala</creator><creator>Smith, Danielle C.</creator><creator>Zhai, Jixian</creator><creator>Hale, Christopher J.</creator><creator>Long, Jeff A.</creator><creator>Hell, Ruediger</creator><creator>Díaz de la Garza, Rocío I.</creator><creator>Jacobsen, Steven E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0547-5032</orcidid><orcidid>https://orcid.org/0000-0001-7790-4022</orcidid></search><sort><creationdate>20160613</creationdate><title>MTHFD1 controls DNA methylation in Arabidopsis</title><author>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>631/337/176/1988</topic><topic>631/449/1659</topic><topic>631/45/607/1168</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cytoplasm - drug effects</topic><topic>Cytoplasm - metabolism</topic><topic>Dehydrogenases</topic><topic>DNA Demethylation</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Folic Acid - metabolism</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Silencing</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histones - metabolism</topic><topic>Homeostasis - drug effects</topic><topic>Homocysteine</topic><topic>Humanities and Social Sciences</topic><topic>Lysine - metabolism</topic><topic>Metabolism</topic><topic>Methenyltetrahydrofolate Cyclohydrolase - genetics</topic><topic>Methenyltetrahydrofolate Cyclohydrolase - metabolism</topic><topic>Methionine - pharmacology</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Protein Transport - drug effects</topic><topic>RNA polymerase</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tetrahydrofolates - pharmacology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groth, Martin</creatorcontrib><creatorcontrib>Moissiard, Guillaume</creatorcontrib><creatorcontrib>Wirtz, Markus</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Garcia-Salinas, Carolina</creatorcontrib><creatorcontrib>Ramos-Parra, Perla A.</creatorcontrib><creatorcontrib>Bischof, Sylvain</creatorcontrib><creatorcontrib>Feng, Suhua</creatorcontrib><creatorcontrib>Cokus, Shawn J.</creatorcontrib><creatorcontrib>John, Amala</creatorcontrib><creatorcontrib>Smith, Danielle C.</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Hale, Christopher J.</creatorcontrib><creatorcontrib>Long, Jeff A.</creatorcontrib><creatorcontrib>Hell, Ruediger</creatorcontrib><creatorcontrib>Díaz de la Garza, Rocío I.</creatorcontrib><creatorcontrib>Jacobsen, Steven E.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groth, Martin</au><au>Moissiard, Guillaume</au><au>Wirtz, Markus</au><au>Wang, Haifeng</au><au>Garcia-Salinas, Carolina</au><au>Ramos-Parra, Perla A.</au><au>Bischof, Sylvain</au><au>Feng, Suhua</au><au>Cokus, Shawn J.</au><au>John, Amala</au><au>Smith, Danielle C.</au><au>Zhai, Jixian</au><au>Hale, Christopher J.</au><au>Long, Jeff A.</au><au>Hell, Ruediger</au><au>Díaz de la Garza, Rocío I.</au><au>Jacobsen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTHFD1 controls DNA methylation in Arabidopsis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-06-13</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11640</spage><epage>13</epage><pages>11640-13</pages><artnum>11640</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized
Arabidopsis thaliana
population for expression of
SDCpro-GFP
, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant
mthfd1-1
, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in
mthfd1-1
and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in
Arabidopsis
. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in
mthfd1-1
. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
DNA methylation contributes to transcriptional silencing. Here, Groth
et al.
show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27291711</pmid><doi>10.1038/ncomms11640</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0547-5032</orcidid><orcidid>https://orcid.org/0000-0001-7790-4022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-06, Vol.7 (1), p.11640-13, Article 11640 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 631/337/176/1988 631/449/1659 631/45/607/1168 Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cytoplasm - drug effects Cytoplasm - metabolism Dehydrogenases DNA Demethylation DNA methylation DNA Methylation - genetics Epigenesis, Genetic Epigenetics Folic Acid - metabolism Gene Expression Regulation, Plant - drug effects Gene Silencing Genomes Green Fluorescent Proteins - metabolism Histones - metabolism Homeostasis - drug effects Homocysteine Humanities and Social Sciences Lysine - metabolism Metabolism Methenyltetrahydrofolate Cyclohydrolase - genetics Methenyltetrahydrofolate Cyclohydrolase - metabolism Methionine - pharmacology Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism Models, Biological multidisciplinary Mutation Mutation - genetics Protein Transport - drug effects RNA polymerase S-Adenosylmethionine - metabolism Science Science (multidisciplinary) Tetrahydrofolates - pharmacology Virology |
title | MTHFD1 controls DNA methylation in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTHFD1%20controls%20DNA%20methylation%20in%20Arabidopsis&rft.jtitle=Nature%20communications&rft.au=Groth,%20Martin&rft.date=2016-06-13&rft.volume=7&rft.issue=1&rft.spage=11640&rft.epage=13&rft.pages=11640-13&rft.artnum=11640&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11640&rft_dat=%3Cproquest_doaj_%3E4086843001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795937103&rft_id=info:pmid/27291711&rfr_iscdi=true |