Loading…

MTHFD1 controls DNA methylation in Arabidopsis

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , r...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-06, Vol.7 (1), p.11640-13, Article 11640
Main Authors: Groth, Martin, Moissiard, Guillaume, Wirtz, Markus, Wang, Haifeng, Garcia-Salinas, Carolina, Ramos-Parra, Perla A., Bischof, Sylvain, Feng, Suhua, Cokus, Shawn J., John, Amala, Smith, Danielle C., Zhai, Jixian, Hale, Christopher J., Long, Jeff A., Hell, Ruediger, Díaz de la Garza, Rocío I., Jacobsen, Steven E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3
cites cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3
container_end_page 13
container_issue 1
container_start_page 11640
container_title Nature communications
container_volume 7
creator Groth, Martin
Moissiard, Guillaume
Wirtz, Markus
Wang, Haifeng
Garcia-Salinas, Carolina
Ramos-Parra, Perla A.
Bischof, Sylvain
Feng, Suhua
Cokus, Shawn J.
John, Amala
Smith, Danielle C.
Zhai, Jixian
Hale, Christopher J.
Long, Jeff A.
Hell, Ruediger
Díaz de la Garza, Rocío I.
Jacobsen, Steven E.
description DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1 , carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis . Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1 . Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. DNA methylation contributes to transcriptional silencing. Here, Groth et al. show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.
doi_str_mv 10.1038/ncomms11640
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e</doaj_id><sourcerecordid>4086843001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</originalsourceid><addsrcrecordid>eNptkctLAzEQh4MoVtSTd1nwqK2ZPDbJRSitj4KPi55Dms3WLbubmmyF_vemtkoFc5mQfHwzww-hM8ADwFRet9Y3TQTIGd5DRwQz6IMgdH_n3kOnMc5xOlSBZOwQ9YggCgTAERo8vT7cjSGzvu2Cr2M2fh5mjeveV7XpKt9mVZsNg5lWhV_EKp6gg9LU0Z1u6zF6u7t9HT30H1_uJ6PhY99yIbs-yQU1gqYiGJG5KCkpqKS4dNwphw1Inpeg7Ho8YwvFGHGs4DkHMS1z6ugxmmy8hTdzvQhVY8JKe1Pp7wcfZtqErrK109YxPJWFzCUrmaG54cAo4SCBOVCwdt1sXIvltHGFdWlTU_-R_v1pq3c985-aKawUp0lwsRUE_7F0sdNzvwxt2l-DUFxRkaJI1OWGssHHGFz52wGwXmeld7JK9PnuUL_sTzIJuNoAMX21Mxd2mv7j-wL3s5vl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795937103</pqid></control><display><type>article</type><title>MTHFD1 controls DNA methylation in Arabidopsis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</creator><creatorcontrib>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</creatorcontrib><description>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1 , carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis . Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1 . Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. DNA methylation contributes to transcriptional silencing. Here, Groth et al. show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11640</identifier><identifier>PMID: 27291711</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 631/337/176/1988 ; 631/449/1659 ; 631/45/607/1168 ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cytoplasm - drug effects ; Cytoplasm - metabolism ; Dehydrogenases ; DNA Demethylation ; DNA methylation ; DNA Methylation - genetics ; Epigenesis, Genetic ; Epigenetics ; Folic Acid - metabolism ; Gene Expression Regulation, Plant - drug effects ; Gene Silencing ; Genomes ; Green Fluorescent Proteins - metabolism ; Histones - metabolism ; Homeostasis - drug effects ; Homocysteine ; Humanities and Social Sciences ; Lysine - metabolism ; Metabolism ; Methenyltetrahydrofolate Cyclohydrolase - genetics ; Methenyltetrahydrofolate Cyclohydrolase - metabolism ; Methionine - pharmacology ; Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics ; Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism ; Models, Biological ; multidisciplinary ; Mutation ; Mutation - genetics ; Protein Transport - drug effects ; RNA polymerase ; S-Adenosylmethionine - metabolism ; Science ; Science (multidisciplinary) ; Tetrahydrofolates - pharmacology ; Virology</subject><ispartof>Nature communications, 2016-06, Vol.7 (1), p.11640-13, Article 11640</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</citedby><cites>FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</cites><orcidid>0000-0003-0547-5032 ; 0000-0001-7790-4022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1795937103/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1795937103?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27291711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groth, Martin</creatorcontrib><creatorcontrib>Moissiard, Guillaume</creatorcontrib><creatorcontrib>Wirtz, Markus</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Garcia-Salinas, Carolina</creatorcontrib><creatorcontrib>Ramos-Parra, Perla A.</creatorcontrib><creatorcontrib>Bischof, Sylvain</creatorcontrib><creatorcontrib>Feng, Suhua</creatorcontrib><creatorcontrib>Cokus, Shawn J.</creatorcontrib><creatorcontrib>John, Amala</creatorcontrib><creatorcontrib>Smith, Danielle C.</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Hale, Christopher J.</creatorcontrib><creatorcontrib>Long, Jeff A.</creatorcontrib><creatorcontrib>Hell, Ruediger</creatorcontrib><creatorcontrib>Díaz de la Garza, Rocío I.</creatorcontrib><creatorcontrib>Jacobsen, Steven E.</creatorcontrib><title>MTHFD1 controls DNA methylation in Arabidopsis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1 , carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis . Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1 . Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. DNA methylation contributes to transcriptional silencing. Here, Groth et al. show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</description><subject>13</subject><subject>631/337/176/1988</subject><subject>631/449/1659</subject><subject>631/45/607/1168</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cytoplasm - drug effects</subject><subject>Cytoplasm - metabolism</subject><subject>Dehydrogenases</subject><subject>DNA Demethylation</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Folic Acid - metabolism</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Silencing</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histones - metabolism</subject><subject>Homeostasis - drug effects</subject><subject>Homocysteine</subject><subject>Humanities and Social Sciences</subject><subject>Lysine - metabolism</subject><subject>Metabolism</subject><subject>Methenyltetrahydrofolate Cyclohydrolase - genetics</subject><subject>Methenyltetrahydrofolate Cyclohydrolase - metabolism</subject><subject>Methionine - pharmacology</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Protein Transport - drug effects</subject><subject>RNA polymerase</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tetrahydrofolates - pharmacology</subject><subject>Virology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctLAzEQh4MoVtSTd1nwqK2ZPDbJRSitj4KPi55Dms3WLbubmmyF_vemtkoFc5mQfHwzww-hM8ADwFRet9Y3TQTIGd5DRwQz6IMgdH_n3kOnMc5xOlSBZOwQ9YggCgTAERo8vT7cjSGzvu2Cr2M2fh5mjeveV7XpKt9mVZsNg5lWhV_EKp6gg9LU0Z1u6zF6u7t9HT30H1_uJ6PhY99yIbs-yQU1gqYiGJG5KCkpqKS4dNwphw1Inpeg7Ho8YwvFGHGs4DkHMS1z6ugxmmy8hTdzvQhVY8JKe1Pp7wcfZtqErrK109YxPJWFzCUrmaG54cAo4SCBOVCwdt1sXIvltHGFdWlTU_-R_v1pq3c985-aKawUp0lwsRUE_7F0sdNzvwxt2l-DUFxRkaJI1OWGssHHGFz52wGwXmeld7JK9PnuUL_sTzIJuNoAMX21Mxd2mv7j-wL3s5vl</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Groth, Martin</creator><creator>Moissiard, Guillaume</creator><creator>Wirtz, Markus</creator><creator>Wang, Haifeng</creator><creator>Garcia-Salinas, Carolina</creator><creator>Ramos-Parra, Perla A.</creator><creator>Bischof, Sylvain</creator><creator>Feng, Suhua</creator><creator>Cokus, Shawn J.</creator><creator>John, Amala</creator><creator>Smith, Danielle C.</creator><creator>Zhai, Jixian</creator><creator>Hale, Christopher J.</creator><creator>Long, Jeff A.</creator><creator>Hell, Ruediger</creator><creator>Díaz de la Garza, Rocío I.</creator><creator>Jacobsen, Steven E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0547-5032</orcidid><orcidid>https://orcid.org/0000-0001-7790-4022</orcidid></search><sort><creationdate>20160613</creationdate><title>MTHFD1 controls DNA methylation in Arabidopsis</title><author>Groth, Martin ; Moissiard, Guillaume ; Wirtz, Markus ; Wang, Haifeng ; Garcia-Salinas, Carolina ; Ramos-Parra, Perla A. ; Bischof, Sylvain ; Feng, Suhua ; Cokus, Shawn J. ; John, Amala ; Smith, Danielle C. ; Zhai, Jixian ; Hale, Christopher J. ; Long, Jeff A. ; Hell, Ruediger ; Díaz de la Garza, Rocío I. ; Jacobsen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>631/337/176/1988</topic><topic>631/449/1659</topic><topic>631/45/607/1168</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cytoplasm - drug effects</topic><topic>Cytoplasm - metabolism</topic><topic>Dehydrogenases</topic><topic>DNA Demethylation</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Folic Acid - metabolism</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Silencing</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histones - metabolism</topic><topic>Homeostasis - drug effects</topic><topic>Homocysteine</topic><topic>Humanities and Social Sciences</topic><topic>Lysine - metabolism</topic><topic>Metabolism</topic><topic>Methenyltetrahydrofolate Cyclohydrolase - genetics</topic><topic>Methenyltetrahydrofolate Cyclohydrolase - metabolism</topic><topic>Methionine - pharmacology</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Protein Transport - drug effects</topic><topic>RNA polymerase</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tetrahydrofolates - pharmacology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groth, Martin</creatorcontrib><creatorcontrib>Moissiard, Guillaume</creatorcontrib><creatorcontrib>Wirtz, Markus</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Garcia-Salinas, Carolina</creatorcontrib><creatorcontrib>Ramos-Parra, Perla A.</creatorcontrib><creatorcontrib>Bischof, Sylvain</creatorcontrib><creatorcontrib>Feng, Suhua</creatorcontrib><creatorcontrib>Cokus, Shawn J.</creatorcontrib><creatorcontrib>John, Amala</creatorcontrib><creatorcontrib>Smith, Danielle C.</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Hale, Christopher J.</creatorcontrib><creatorcontrib>Long, Jeff A.</creatorcontrib><creatorcontrib>Hell, Ruediger</creatorcontrib><creatorcontrib>Díaz de la Garza, Rocío I.</creatorcontrib><creatorcontrib>Jacobsen, Steven E.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groth, Martin</au><au>Moissiard, Guillaume</au><au>Wirtz, Markus</au><au>Wang, Haifeng</au><au>Garcia-Salinas, Carolina</au><au>Ramos-Parra, Perla A.</au><au>Bischof, Sylvain</au><au>Feng, Suhua</au><au>Cokus, Shawn J.</au><au>John, Amala</au><au>Smith, Danielle C.</au><au>Zhai, Jixian</au><au>Hale, Christopher J.</au><au>Long, Jeff A.</au><au>Hell, Ruediger</au><au>Díaz de la Garza, Rocío I.</au><au>Jacobsen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTHFD1 controls DNA methylation in Arabidopsis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-06-13</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11640</spage><epage>13</epage><pages>11640-13</pages><artnum>11640</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP , redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1 , carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis . Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1 . Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. DNA methylation contributes to transcriptional silencing. Here, Groth et al. show that mutant plants defective in MTHFD1, an enzyme involved in folate metabolism, have a DNA hypomethylation phenotype highlighting the link between one-carbon metabolism and DNA methylation, which is mediated by SAM as a common methyl donor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27291711</pmid><doi>10.1038/ncomms11640</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0547-5032</orcidid><orcidid>https://orcid.org/0000-0001-7790-4022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-06, Vol.7 (1), p.11640-13, Article 11640
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ce40b8d8684f4a36a5143251814e191e
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
631/337/176/1988
631/449/1659
631/45/607/1168
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cytoplasm - drug effects
Cytoplasm - metabolism
Dehydrogenases
DNA Demethylation
DNA methylation
DNA Methylation - genetics
Epigenesis, Genetic
Epigenetics
Folic Acid - metabolism
Gene Expression Regulation, Plant - drug effects
Gene Silencing
Genomes
Green Fluorescent Proteins - metabolism
Histones - metabolism
Homeostasis - drug effects
Homocysteine
Humanities and Social Sciences
Lysine - metabolism
Metabolism
Methenyltetrahydrofolate Cyclohydrolase - genetics
Methenyltetrahydrofolate Cyclohydrolase - metabolism
Methionine - pharmacology
Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics
Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism
Models, Biological
multidisciplinary
Mutation
Mutation - genetics
Protein Transport - drug effects
RNA polymerase
S-Adenosylmethionine - metabolism
Science
Science (multidisciplinary)
Tetrahydrofolates - pharmacology
Virology
title MTHFD1 controls DNA methylation in Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTHFD1%20controls%20DNA%20methylation%20in%20Arabidopsis&rft.jtitle=Nature%20communications&rft.au=Groth,%20Martin&rft.date=2016-06-13&rft.volume=7&rft.issue=1&rft.spage=11640&rft.epage=13&rft.pages=11640-13&rft.artnum=11640&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11640&rft_dat=%3Cproquest_doaj_%3E4086843001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-2673a73267742867f32d3830fe5e9e0a1856f19c1723acd9442e4d56517bf63e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795937103&rft_id=info:pmid/27291711&rfr_iscdi=true