Loading…
Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry
The Kelvin–Helmholtz instability (KHI), characterized by vortices forming at a perturbed velocity shear layer, is a prominent candidate mechanism for mass, momentum, and energy transport across boundaries with velocity shear in various space plasma environments. It is of particular interest at the f...
Saved in:
Published in: | The Astrophysical journal 2024-10, Vol.974 (1), p.62 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-32bffd8b2acf4329281e9c31d117d9288f21150ce7845c02d809abc87f929e953 |
container_end_page | |
container_issue | 1 |
container_start_page | 62 |
container_title | The Astrophysical journal |
container_volume | 974 |
creator | Tarvus, Vertti Turc, Lucile Zhou, Hongyang Nakamura, Takuma Settino, Adriana Blasl, Kevin Cozzani, Giulia Ganse, Urs Pfau-Kempf, Yann Alho, Markku Battarbee, Markus Bussov, Maarja Dubart, Maxime Gordeev, Evgeniy Tesema Kebede, Fasil Papadakis, Konstantinos Suni, Jonas Zaitsev, Ivan Palmroth, Minna |
description | The Kelvin–Helmholtz instability (KHI), characterized by vortices forming at a perturbed velocity shear layer, is a prominent candidate mechanism for mass, momentum, and energy transport across boundaries with velocity shear in various space plasma environments. It is of particular interest at the flanks of Earth’s magnetopause, which separates the plasma of the magnetosphere from the adjacent shocked solar wind flow in the magnetosheath. In the present study, we use local hybrid-Vlasov simulations to investigate the ion velocity distribution functions (VDFs) associated with KHI in a magnetopause-like, transverse velocity shear layer setting (magnetic field perpendicular to the shear plane). We look for signatures of ion finite Larmor radius (FLR) effects, which could be utilized in spacecraft measurements to recognize when such effects are active, influencing KHI evolution and driving plasma mixing. We show that when a density/temperature asymmetry exists across the shear layer, FLR effects produce a heat flux along the vortex edges. With a magnitude (≳0.1 mW m −2 ) that is a significant fraction of the total magnetosheath energy flux, the heat flux provides a distinct signature that could be measured with a single spacecraft. During the late nonlinear stage of KHI, mixed non-Maxwellian ion VDFs are additionally found within the vortices. Our results are also valid in the presence of a small magnetic shear across the magnetopause. |
doi_str_mv | 10.3847/1538-4357/ad697a |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce474053f32941f4a5031fb5d69feeac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce474053f32941f4a5031fb5d69feeac</doaj_id><sourcerecordid>3113122280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-32bffd8b2acf4329281e9c31d117d9288f21150ce7845c02d809abc87f929e953</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEEkNhz9ISW0L9kzTxsmopM2orNqViZzn2dccjJx5sp1W66jt018fjSXAaVFas7Ht87ndtn6L4SPAX1lbNIalZW1asbg6lPuKNfFWsXqTXxQpjXJVHrPn5tngX424uKeer4mk9dcHq8trJ6G_RpdfgnB1ukDdo4wd0Dc4rmyZ0amMKthuTzerZOKh5E9FxjPlcJtDozqYtSltA5-Bu7fD74XENrt96l-7RZohJdtbNpGefRKcwxLmUg0ZX0O8hyDQGyMSp7yGF6X3xxkgX4cPf9aD4cfb16mRdXnz_tjk5vihVfkEqGe2M0W1HpTIVo5y2BLhiRBPS6Fy1hhJSYwVNW9UKU91iLjvVNoZTDrxmB8Vm4Wovd2IfbC_DJLy04lnw4UbIkKxyIBRUTYVrZvKciphK1pgR09X5xw2AVJn1aWHtg_81Qkxi58cw5OsLRggjlNIWZxdeXCr4GAOYl6kEizlNMUcn5ujEkmZu-by0WL__x_yv_Q_RaKSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113122280</pqid></control><display><type>article</type><title>Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry</title><source>EZB Electronic Journals Library</source><creator>Tarvus, Vertti ; Turc, Lucile ; Zhou, Hongyang ; Nakamura, Takuma ; Settino, Adriana ; Blasl, Kevin ; Cozzani, Giulia ; Ganse, Urs ; Pfau-Kempf, Yann ; Alho, Markku ; Battarbee, Markus ; Bussov, Maarja ; Dubart, Maxime ; Gordeev, Evgeniy ; Tesema Kebede, Fasil ; Papadakis, Konstantinos ; Suni, Jonas ; Zaitsev, Ivan ; Palmroth, Minna</creator><creatorcontrib>Tarvus, Vertti ; Turc, Lucile ; Zhou, Hongyang ; Nakamura, Takuma ; Settino, Adriana ; Blasl, Kevin ; Cozzani, Giulia ; Ganse, Urs ; Pfau-Kempf, Yann ; Alho, Markku ; Battarbee, Markus ; Bussov, Maarja ; Dubart, Maxime ; Gordeev, Evgeniy ; Tesema Kebede, Fasil ; Papadakis, Konstantinos ; Suni, Jonas ; Zaitsev, Ivan ; Palmroth, Minna</creatorcontrib><description>The Kelvin–Helmholtz instability (KHI), characterized by vortices forming at a perturbed velocity shear layer, is a prominent candidate mechanism for mass, momentum, and energy transport across boundaries with velocity shear in various space plasma environments. It is of particular interest at the flanks of Earth’s magnetopause, which separates the plasma of the magnetosphere from the adjacent shocked solar wind flow in the magnetosheath. In the present study, we use local hybrid-Vlasov simulations to investigate the ion velocity distribution functions (VDFs) associated with KHI in a magnetopause-like, transverse velocity shear layer setting (magnetic field perpendicular to the shear plane). We look for signatures of ion finite Larmor radius (FLR) effects, which could be utilized in spacecraft measurements to recognize when such effects are active, influencing KHI evolution and driving plasma mixing. We show that when a density/temperature asymmetry exists across the shear layer, FLR effects produce a heat flux along the vortex edges. With a magnitude (≳0.1 mW m −2 ) that is a significant fraction of the total magnetosheath energy flux, the heat flux provides a distinct signature that could be measured with a single spacecraft. During the late nonlinear stage of KHI, mixed non-Maxwellian ion VDFs are additionally found within the vortices. Our results are also valid in the presence of a small magnetic shear across the magnetopause.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad697a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Density ; Distribution functions ; Earth magnetosphere ; Energy flux ; Energy transport ; Flow stability ; Fluctuations ; Fluid flow ; Heat flux ; Heat transfer ; Ion velocity ; Ions ; Kelvin-Helmholtz instability ; Larmor radius ; Magnetic fields ; Magnetopause ; Magnetosheath ; Planetary magnetospheres ; Plasma physics ; Shear layers ; Shear planes ; Skewed distributions ; Solar wind ; Solar wind flow ; Space plasmas ; Spacecraft ; Velocity ; Velocity distribution ; Vortices ; Wind flow</subject><ispartof>The Astrophysical journal, 2024-10, Vol.974 (1), p.62</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-32bffd8b2acf4329281e9c31d117d9288f21150ce7845c02d809abc87f929e953</cites><orcidid>0000-0002-6445-4402 ; 0000-0002-5095-4609 ; 0000-0003-0872-1761 ; 0000-0003-4857-1227 ; 0000-0002-3369-4761 ; 0000-0002-7576-3251 ; 0000-0001-9762-6795 ; 0000-0001-5515-1998 ; 0000-0002-0640-0123 ; 0000-0001-7055-551X ; 0000-0003-1821-7390 ; 0000-0001-7350-1509 ; 0000-0002-1655-4601 ; 0000-0003-4571-4501 ; 0000-0003-4550-2947 ; 0000-0002-5978-6955 ; 0000-0001-5793-7070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tarvus, Vertti</creatorcontrib><creatorcontrib>Turc, Lucile</creatorcontrib><creatorcontrib>Zhou, Hongyang</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>Settino, Adriana</creatorcontrib><creatorcontrib>Blasl, Kevin</creatorcontrib><creatorcontrib>Cozzani, Giulia</creatorcontrib><creatorcontrib>Ganse, Urs</creatorcontrib><creatorcontrib>Pfau-Kempf, Yann</creatorcontrib><creatorcontrib>Alho, Markku</creatorcontrib><creatorcontrib>Battarbee, Markus</creatorcontrib><creatorcontrib>Bussov, Maarja</creatorcontrib><creatorcontrib>Dubart, Maxime</creatorcontrib><creatorcontrib>Gordeev, Evgeniy</creatorcontrib><creatorcontrib>Tesema Kebede, Fasil</creatorcontrib><creatorcontrib>Papadakis, Konstantinos</creatorcontrib><creatorcontrib>Suni, Jonas</creatorcontrib><creatorcontrib>Zaitsev, Ivan</creatorcontrib><creatorcontrib>Palmroth, Minna</creatorcontrib><title>Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Kelvin–Helmholtz instability (KHI), characterized by vortices forming at a perturbed velocity shear layer, is a prominent candidate mechanism for mass, momentum, and energy transport across boundaries with velocity shear in various space plasma environments. It is of particular interest at the flanks of Earth’s magnetopause, which separates the plasma of the magnetosphere from the adjacent shocked solar wind flow in the magnetosheath. In the present study, we use local hybrid-Vlasov simulations to investigate the ion velocity distribution functions (VDFs) associated with KHI in a magnetopause-like, transverse velocity shear layer setting (magnetic field perpendicular to the shear plane). We look for signatures of ion finite Larmor radius (FLR) effects, which could be utilized in spacecraft measurements to recognize when such effects are active, influencing KHI evolution and driving plasma mixing. We show that when a density/temperature asymmetry exists across the shear layer, FLR effects produce a heat flux along the vortex edges. With a magnitude (≳0.1 mW m −2 ) that is a significant fraction of the total magnetosheath energy flux, the heat flux provides a distinct signature that could be measured with a single spacecraft. During the late nonlinear stage of KHI, mixed non-Maxwellian ion VDFs are additionally found within the vortices. Our results are also valid in the presence of a small magnetic shear across the magnetopause.</description><subject>Density</subject><subject>Distribution functions</subject><subject>Earth magnetosphere</subject><subject>Energy flux</subject><subject>Energy transport</subject><subject>Flow stability</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Ion velocity</subject><subject>Ions</subject><subject>Kelvin-Helmholtz instability</subject><subject>Larmor radius</subject><subject>Magnetic fields</subject><subject>Magnetopause</subject><subject>Magnetosheath</subject><subject>Planetary magnetospheres</subject><subject>Plasma physics</subject><subject>Shear layers</subject><subject>Shear planes</subject><subject>Skewed distributions</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Space plasmas</subject><subject>Spacecraft</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Vortices</subject><subject>Wind flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kc1u1DAUhSMEEkNhz9ISW0L9kzTxsmopM2orNqViZzn2dccjJx5sp1W66jt018fjSXAaVFas7Ht87ndtn6L4SPAX1lbNIalZW1asbg6lPuKNfFWsXqTXxQpjXJVHrPn5tngX424uKeer4mk9dcHq8trJ6G_RpdfgnB1ukDdo4wd0Dc4rmyZ0amMKthuTzerZOKh5E9FxjPlcJtDozqYtSltA5-Bu7fD74XENrt96l-7RZohJdtbNpGefRKcwxLmUg0ZX0O8hyDQGyMSp7yGF6X3xxkgX4cPf9aD4cfb16mRdXnz_tjk5vihVfkEqGe2M0W1HpTIVo5y2BLhiRBPS6Fy1hhJSYwVNW9UKU91iLjvVNoZTDrxmB8Vm4Wovd2IfbC_DJLy04lnw4UbIkKxyIBRUTYVrZvKciphK1pgR09X5xw2AVJn1aWHtg_81Qkxi58cw5OsLRggjlNIWZxdeXCr4GAOYl6kEizlNMUcn5ujEkmZu-by0WL__x_yv_Q_RaKSE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Tarvus, Vertti</creator><creator>Turc, Lucile</creator><creator>Zhou, Hongyang</creator><creator>Nakamura, Takuma</creator><creator>Settino, Adriana</creator><creator>Blasl, Kevin</creator><creator>Cozzani, Giulia</creator><creator>Ganse, Urs</creator><creator>Pfau-Kempf, Yann</creator><creator>Alho, Markku</creator><creator>Battarbee, Markus</creator><creator>Bussov, Maarja</creator><creator>Dubart, Maxime</creator><creator>Gordeev, Evgeniy</creator><creator>Tesema Kebede, Fasil</creator><creator>Papadakis, Konstantinos</creator><creator>Suni, Jonas</creator><creator>Zaitsev, Ivan</creator><creator>Palmroth, Minna</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6445-4402</orcidid><orcidid>https://orcid.org/0000-0002-5095-4609</orcidid><orcidid>https://orcid.org/0000-0003-0872-1761</orcidid><orcidid>https://orcid.org/0000-0003-4857-1227</orcidid><orcidid>https://orcid.org/0000-0002-3369-4761</orcidid><orcidid>https://orcid.org/0000-0002-7576-3251</orcidid><orcidid>https://orcid.org/0000-0001-9762-6795</orcidid><orcidid>https://orcid.org/0000-0001-5515-1998</orcidid><orcidid>https://orcid.org/0000-0002-0640-0123</orcidid><orcidid>https://orcid.org/0000-0001-7055-551X</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0001-7350-1509</orcidid><orcidid>https://orcid.org/0000-0002-1655-4601</orcidid><orcidid>https://orcid.org/0000-0003-4571-4501</orcidid><orcidid>https://orcid.org/0000-0003-4550-2947</orcidid><orcidid>https://orcid.org/0000-0002-5978-6955</orcidid><orcidid>https://orcid.org/0000-0001-5793-7070</orcidid></search><sort><creationdate>20241001</creationdate><title>Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry</title><author>Tarvus, Vertti ; Turc, Lucile ; Zhou, Hongyang ; Nakamura, Takuma ; Settino, Adriana ; Blasl, Kevin ; Cozzani, Giulia ; Ganse, Urs ; Pfau-Kempf, Yann ; Alho, Markku ; Battarbee, Markus ; Bussov, Maarja ; Dubart, Maxime ; Gordeev, Evgeniy ; Tesema Kebede, Fasil ; Papadakis, Konstantinos ; Suni, Jonas ; Zaitsev, Ivan ; Palmroth, Minna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-32bffd8b2acf4329281e9c31d117d9288f21150ce7845c02d809abc87f929e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Distribution functions</topic><topic>Earth magnetosphere</topic><topic>Energy flux</topic><topic>Energy transport</topic><topic>Flow stability</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Ion velocity</topic><topic>Ions</topic><topic>Kelvin-Helmholtz instability</topic><topic>Larmor radius</topic><topic>Magnetic fields</topic><topic>Magnetopause</topic><topic>Magnetosheath</topic><topic>Planetary magnetospheres</topic><topic>Plasma physics</topic><topic>Shear layers</topic><topic>Shear planes</topic><topic>Skewed distributions</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Space plasmas</topic><topic>Spacecraft</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Vortices</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarvus, Vertti</creatorcontrib><creatorcontrib>Turc, Lucile</creatorcontrib><creatorcontrib>Zhou, Hongyang</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>Settino, Adriana</creatorcontrib><creatorcontrib>Blasl, Kevin</creatorcontrib><creatorcontrib>Cozzani, Giulia</creatorcontrib><creatorcontrib>Ganse, Urs</creatorcontrib><creatorcontrib>Pfau-Kempf, Yann</creatorcontrib><creatorcontrib>Alho, Markku</creatorcontrib><creatorcontrib>Battarbee, Markus</creatorcontrib><creatorcontrib>Bussov, Maarja</creatorcontrib><creatorcontrib>Dubart, Maxime</creatorcontrib><creatorcontrib>Gordeev, Evgeniy</creatorcontrib><creatorcontrib>Tesema Kebede, Fasil</creatorcontrib><creatorcontrib>Papadakis, Konstantinos</creatorcontrib><creatorcontrib>Suni, Jonas</creatorcontrib><creatorcontrib>Zaitsev, Ivan</creatorcontrib><creatorcontrib>Palmroth, Minna</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarvus, Vertti</au><au>Turc, Lucile</au><au>Zhou, Hongyang</au><au>Nakamura, Takuma</au><au>Settino, Adriana</au><au>Blasl, Kevin</au><au>Cozzani, Giulia</au><au>Ganse, Urs</au><au>Pfau-Kempf, Yann</au><au>Alho, Markku</au><au>Battarbee, Markus</au><au>Bussov, Maarja</au><au>Dubart, Maxime</au><au>Gordeev, Evgeniy</au><au>Tesema Kebede, Fasil</au><au>Papadakis, Konstantinos</au><au>Suni, Jonas</au><au>Zaitsev, Ivan</au><au>Palmroth, Minna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>974</volume><issue>1</issue><spage>62</spage><pages>62-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The Kelvin–Helmholtz instability (KHI), characterized by vortices forming at a perturbed velocity shear layer, is a prominent candidate mechanism for mass, momentum, and energy transport across boundaries with velocity shear in various space plasma environments. It is of particular interest at the flanks of Earth’s magnetopause, which separates the plasma of the magnetosphere from the adjacent shocked solar wind flow in the magnetosheath. In the present study, we use local hybrid-Vlasov simulations to investigate the ion velocity distribution functions (VDFs) associated with KHI in a magnetopause-like, transverse velocity shear layer setting (magnetic field perpendicular to the shear plane). We look for signatures of ion finite Larmor radius (FLR) effects, which could be utilized in spacecraft measurements to recognize when such effects are active, influencing KHI evolution and driving plasma mixing. We show that when a density/temperature asymmetry exists across the shear layer, FLR effects produce a heat flux along the vortex edges. With a magnitude (≳0.1 mW m −2 ) that is a significant fraction of the total magnetosheath energy flux, the heat flux provides a distinct signature that could be measured with a single spacecraft. During the late nonlinear stage of KHI, mixed non-Maxwellian ion VDFs are additionally found within the vortices. Our results are also valid in the presence of a small magnetic shear across the magnetopause.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad697a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6445-4402</orcidid><orcidid>https://orcid.org/0000-0002-5095-4609</orcidid><orcidid>https://orcid.org/0000-0003-0872-1761</orcidid><orcidid>https://orcid.org/0000-0003-4857-1227</orcidid><orcidid>https://orcid.org/0000-0002-3369-4761</orcidid><orcidid>https://orcid.org/0000-0002-7576-3251</orcidid><orcidid>https://orcid.org/0000-0001-9762-6795</orcidid><orcidid>https://orcid.org/0000-0001-5515-1998</orcidid><orcidid>https://orcid.org/0000-0002-0640-0123</orcidid><orcidid>https://orcid.org/0000-0001-7055-551X</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0001-7350-1509</orcidid><orcidid>https://orcid.org/0000-0002-1655-4601</orcidid><orcidid>https://orcid.org/0000-0003-4571-4501</orcidid><orcidid>https://orcid.org/0000-0003-4550-2947</orcidid><orcidid>https://orcid.org/0000-0002-5978-6955</orcidid><orcidid>https://orcid.org/0000-0001-5793-7070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-10, Vol.974 (1), p.62 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ce474053f32941f4a5031fb5d69feeac |
source | EZB Electronic Journals Library |
subjects | Density Distribution functions Earth magnetosphere Energy flux Energy transport Flow stability Fluctuations Fluid flow Heat flux Heat transfer Ion velocity Ions Kelvin-Helmholtz instability Larmor radius Magnetic fields Magnetopause Magnetosheath Planetary magnetospheres Plasma physics Shear layers Shear planes Skewed distributions Solar wind Solar wind flow Space plasmas Spacecraft Velocity Velocity distribution Vortices Wind flow |
title | Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid-Vlasov%20Modelling%20of%20Ion%20Velocity%20Distribution%20Functions%20Associated%20with%20the%20Kelvin%E2%80%93Helmholtz%20Instability%20with%20a%20Density%20and%20Temperature%20Asymmetry&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tarvus,%20Vertti&rft.date=2024-10-01&rft.volume=974&rft.issue=1&rft.spage=62&rft.pages=62-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad697a&rft_dat=%3Cproquest_doaj_%3E3113122280%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-32bffd8b2acf4329281e9c31d117d9288f21150ce7845c02d809abc87f929e953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113122280&rft_id=info:pmid/&rfr_iscdi=true |