Loading…

Downscaling Regional Crop Yields to Local Scale Using Remote Sensing

Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics ove...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2020-03, Vol.10 (3), p.58
Main Authors: Shirsath, Paresh B., Sehgal, Vinay Kumar, Aggarwal, Pramod K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763
cites cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763
container_end_page
container_issue 3
container_start_page 58
container_title Agriculture (Basel)
container_volume 10
creator Shirsath, Paresh B.
Sehgal, Vinay Kumar
Aggarwal, Pramod K.
description Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.
doi_str_mv 10.3390/agriculture10030058
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5</doaj_id><sourcerecordid>2373318109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</originalsourceid><addsrcrecordid>eNptkMtKxDAUhosoOIzzBG4CrqtJTtOkS5nxMjAgOM7CVci1dOg0Y9Iivr3VirjwLM6Nj_9w_iy7JPgaoMI3qo6NGdp-iI5gDBgzcZLNKOY8xwWnp3_682yR0h6PUREQuJxlq1V475JRbdPV6NnVTehUi5YxHNFr41qbUB_QJowA2o7JoV2ayEPoHdq67mu8yM68apNb_NR5tru_e1k-5punh_XydpMbEKLPmSmYB2wLINj4UmsjHLXUemytYKU2oCll3HgqNDheuZJWvrCME18KwkuYZ-tJ1wa1l8fYHFT8kEE18nsRYi1V7BvTOmmcIMKDZoqTgpdcG6aZ0d67kgPXbNS6mrSOMbwNLvVyH4Y4Pp8kBQ5ABMHVSMFEmRhSis7_XiVYfrkv_3EfPgFz63oi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373318109</pqid></control><display><type>article</type><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><source>Publicly Available Content Database</source><creator>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</creator><creatorcontrib>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</creatorcontrib><description>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture10030058</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural management ; Agricultural production ; Agriculture ; Cereal crops ; Correlation coefficient ; Correlation coefficients ; Crop insurance ; Crop production ; Crop yield ; Crops ; Datasets ; Design ; Disaggregation ; downscaling ; Methodology ; Pixels ; Rain ; Remote sensing ; Risk management ; Simulation ; Sorghum ; Statistics ; Vegetation ; Vegetation index ; Winter</subject><ispartof>Agriculture (Basel), 2020-03, Vol.10 (3), p.58</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</citedby><cites>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</cites><orcidid>0000-0002-3473-9722 ; 0000-0003-3266-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2373318109/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2373318109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Shirsath, Paresh B.</creatorcontrib><creatorcontrib>Sehgal, Vinay Kumar</creatorcontrib><creatorcontrib>Aggarwal, Pramod K.</creatorcontrib><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><title>Agriculture (Basel)</title><description>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</description><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Cereal crops</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crop insurance</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Datasets</subject><subject>Design</subject><subject>Disaggregation</subject><subject>downscaling</subject><subject>Methodology</subject><subject>Pixels</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Risk management</subject><subject>Simulation</subject><subject>Sorghum</subject><subject>Statistics</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Winter</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkMtKxDAUhosoOIzzBG4CrqtJTtOkS5nxMjAgOM7CVci1dOg0Y9Iivr3VirjwLM6Nj_9w_iy7JPgaoMI3qo6NGdp-iI5gDBgzcZLNKOY8xwWnp3_682yR0h6PUREQuJxlq1V475JRbdPV6NnVTehUi5YxHNFr41qbUB_QJowA2o7JoV2ayEPoHdq67mu8yM68apNb_NR5tru_e1k-5punh_XydpMbEKLPmSmYB2wLINj4UmsjHLXUemytYKU2oCll3HgqNDheuZJWvrCME18KwkuYZ-tJ1wa1l8fYHFT8kEE18nsRYi1V7BvTOmmcIMKDZoqTgpdcG6aZ0d67kgPXbNS6mrSOMbwNLvVyH4Y4Pp8kBQ5ABMHVSMFEmRhSis7_XiVYfrkv_3EfPgFz63oi</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shirsath, Paresh B.</creator><creator>Sehgal, Vinay Kumar</creator><creator>Aggarwal, Pramod K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3473-9722</orcidid><orcidid>https://orcid.org/0000-0003-3266-922X</orcidid></search><sort><creationdate>20200301</creationdate><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><author>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Cereal crops</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crop insurance</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Datasets</topic><topic>Design</topic><topic>Disaggregation</topic><topic>downscaling</topic><topic>Methodology</topic><topic>Pixels</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Risk management</topic><topic>Simulation</topic><topic>Sorghum</topic><topic>Statistics</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirsath, Paresh B.</creatorcontrib><creatorcontrib>Sehgal, Vinay Kumar</creatorcontrib><creatorcontrib>Aggarwal, Pramod K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirsath, Paresh B.</au><au>Sehgal, Vinay Kumar</au><au>Aggarwal, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</atitle><jtitle>Agriculture (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>58</spage><pages>58-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture10030058</doi><orcidid>https://orcid.org/0000-0002-3473-9722</orcidid><orcidid>https://orcid.org/0000-0003-3266-922X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2020-03, Vol.10 (3), p.58
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5
source Publicly Available Content Database
subjects Agricultural management
Agricultural production
Agriculture
Cereal crops
Correlation coefficient
Correlation coefficients
Crop insurance
Crop production
Crop yield
Crops
Datasets
Design
Disaggregation
downscaling
Methodology
Pixels
Rain
Remote sensing
Risk management
Simulation
Sorghum
Statistics
Vegetation
Vegetation index
Winter
title Downscaling Regional Crop Yields to Local Scale Using Remote Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downscaling%20Regional%20Crop%20Yields%20to%20Local%20Scale%20Using%20Remote%20Sensing&rft.jtitle=Agriculture%20(Basel)&rft.au=Shirsath,%20Paresh%20B.&rft.date=2020-03-01&rft.volume=10&rft.issue=3&rft.spage=58&rft.pages=58-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture10030058&rft_dat=%3Cproquest_doaj_%3E2373318109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2373318109&rft_id=info:pmid/&rfr_iscdi=true