Loading…
Downscaling Regional Crop Yields to Local Scale Using Remote Sensing
Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics ove...
Saved in:
Published in: | Agriculture (Basel) 2020-03, Vol.10 (3), p.58 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763 |
container_end_page | |
container_issue | 3 |
container_start_page | 58 |
container_title | Agriculture (Basel) |
container_volume | 10 |
creator | Shirsath, Paresh B. Sehgal, Vinay Kumar Aggarwal, Pramod K. |
description | Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9. |
doi_str_mv | 10.3390/agriculture10030058 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5</doaj_id><sourcerecordid>2373318109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</originalsourceid><addsrcrecordid>eNptkMtKxDAUhosoOIzzBG4CrqtJTtOkS5nxMjAgOM7CVci1dOg0Y9Iivr3VirjwLM6Nj_9w_iy7JPgaoMI3qo6NGdp-iI5gDBgzcZLNKOY8xwWnp3_682yR0h6PUREQuJxlq1V475JRbdPV6NnVTehUi5YxHNFr41qbUB_QJowA2o7JoV2ayEPoHdq67mu8yM68apNb_NR5tru_e1k-5punh_XydpMbEKLPmSmYB2wLINj4UmsjHLXUemytYKU2oCll3HgqNDheuZJWvrCME18KwkuYZ-tJ1wa1l8fYHFT8kEE18nsRYi1V7BvTOmmcIMKDZoqTgpdcG6aZ0d67kgPXbNS6mrSOMbwNLvVyH4Y4Pp8kBQ5ABMHVSMFEmRhSis7_XiVYfrkv_3EfPgFz63oi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373318109</pqid></control><display><type>article</type><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><source>Publicly Available Content Database</source><creator>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</creator><creatorcontrib>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</creatorcontrib><description>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture10030058</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural management ; Agricultural production ; Agriculture ; Cereal crops ; Correlation coefficient ; Correlation coefficients ; Crop insurance ; Crop production ; Crop yield ; Crops ; Datasets ; Design ; Disaggregation ; downscaling ; Methodology ; Pixels ; Rain ; Remote sensing ; Risk management ; Simulation ; Sorghum ; Statistics ; Vegetation ; Vegetation index ; Winter</subject><ispartof>Agriculture (Basel), 2020-03, Vol.10 (3), p.58</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</citedby><cites>FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</cites><orcidid>0000-0002-3473-9722 ; 0000-0003-3266-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2373318109/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2373318109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Shirsath, Paresh B.</creatorcontrib><creatorcontrib>Sehgal, Vinay Kumar</creatorcontrib><creatorcontrib>Aggarwal, Pramod K.</creatorcontrib><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><title>Agriculture (Basel)</title><description>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</description><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Cereal crops</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crop insurance</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Datasets</subject><subject>Design</subject><subject>Disaggregation</subject><subject>downscaling</subject><subject>Methodology</subject><subject>Pixels</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Risk management</subject><subject>Simulation</subject><subject>Sorghum</subject><subject>Statistics</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Winter</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkMtKxDAUhosoOIzzBG4CrqtJTtOkS5nxMjAgOM7CVci1dOg0Y9Iivr3VirjwLM6Nj_9w_iy7JPgaoMI3qo6NGdp-iI5gDBgzcZLNKOY8xwWnp3_682yR0h6PUREQuJxlq1V475JRbdPV6NnVTehUi5YxHNFr41qbUB_QJowA2o7JoV2ayEPoHdq67mu8yM68apNb_NR5tru_e1k-5punh_XydpMbEKLPmSmYB2wLINj4UmsjHLXUemytYKU2oCll3HgqNDheuZJWvrCME18KwkuYZ-tJ1wa1l8fYHFT8kEE18nsRYi1V7BvTOmmcIMKDZoqTgpdcG6aZ0d67kgPXbNS6mrSOMbwNLvVyH4Y4Pp8kBQ5ABMHVSMFEmRhSis7_XiVYfrkv_3EfPgFz63oi</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shirsath, Paresh B.</creator><creator>Sehgal, Vinay Kumar</creator><creator>Aggarwal, Pramod K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3473-9722</orcidid><orcidid>https://orcid.org/0000-0003-3266-922X</orcidid></search><sort><creationdate>20200301</creationdate><title>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</title><author>Shirsath, Paresh B. ; Sehgal, Vinay Kumar ; Aggarwal, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Cereal crops</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crop insurance</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Datasets</topic><topic>Design</topic><topic>Disaggregation</topic><topic>downscaling</topic><topic>Methodology</topic><topic>Pixels</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Risk management</topic><topic>Simulation</topic><topic>Sorghum</topic><topic>Statistics</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirsath, Paresh B.</creatorcontrib><creatorcontrib>Sehgal, Vinay Kumar</creatorcontrib><creatorcontrib>Aggarwal, Pramod K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirsath, Paresh B.</au><au>Sehgal, Vinay Kumar</au><au>Aggarwal, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downscaling Regional Crop Yields to Local Scale Using Remote Sensing</atitle><jtitle>Agriculture (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>58</spage><pages>58-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Local-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture10030058</doi><orcidid>https://orcid.org/0000-0002-3473-9722</orcidid><orcidid>https://orcid.org/0000-0003-3266-922X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0472 |
ispartof | Agriculture (Basel), 2020-03, Vol.10 (3), p.58 |
issn | 2077-0472 2077-0472 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ce818f3b5a714767bc5b5cbffe6737b5 |
source | Publicly Available Content Database |
subjects | Agricultural management Agricultural production Agriculture Cereal crops Correlation coefficient Correlation coefficients Crop insurance Crop production Crop yield Crops Datasets Design Disaggregation downscaling Methodology Pixels Rain Remote sensing Risk management Simulation Sorghum Statistics Vegetation Vegetation index Winter |
title | Downscaling Regional Crop Yields to Local Scale Using Remote Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downscaling%20Regional%20Crop%20Yields%20to%20Local%20Scale%20Using%20Remote%20Sensing&rft.jtitle=Agriculture%20(Basel)&rft.au=Shirsath,%20Paresh%20B.&rft.date=2020-03-01&rft.volume=10&rft.issue=3&rft.spage=58&rft.pages=58-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture10030058&rft_dat=%3Cproquest_doaj_%3E2373318109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-5c45f30d4310cf6bbc8e2d2df0dd856bc3b2257cf28b3e79e629f4d571f681763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2373318109&rft_id=info:pmid/&rfr_iscdi=true |