Loading…

A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior

During the broadcast of Coronavirus across the globe, many mathematicians made several mathematical models. This was, of course, in order to understand the forecast and behavior of this epidemic’s spread precisely. Nevertheless, due to the lack of much information about it, the application of many m...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-07, Vol.10 (13), p.2224
Main Authors: Djenina, Noureddine, Ouannas, Adel, Batiha, Iqbal M., Grassi, Giuseppe, Oussaeif, Taki-Eddine, Momani, Shaher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the broadcast of Coronavirus across the globe, many mathematicians made several mathematical models. This was, of course, in order to understand the forecast and behavior of this epidemic’s spread precisely. Nevertheless, due to the lack of much information about it, the application of many models has become difficult in reality and sometimes impossible, unlike the simple SIR model. In this work, a simple, novel fractional-order discrete model is proposed in order to study the behavior of the COVID-19 epidemic. Such a model has shown its ability to adapt to the periodic change in the number of infections. The existence and uniqueness of the solution for the proposed model are examined with the help of the Picard Lindelöf method. Some theoretical results are established in view of the connection between the stability of the fixed points of this model and the basic reproduction number. Several numerical simulations are performed to verify the gained results.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10132224