Loading…

Data on artificial neural network and response surface methodology analysis of biodiesel production

The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief 2020-08, Vol.31, p.105726-105726, Article 105726
Main Authors: Ayoola, A.A., Hymore, F.K., Omonhinmin, C.A., Babalola, P.O., Bolujo, E.O., Adeyemi, G.A., Babalola, R., Olafadehan, O.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3
cites cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3
container_end_page 105726
container_issue
container_start_page 105726
container_title Data in brief
container_volume 31
creator Ayoola, A.A.
Hymore, F.K.
Omonhinmin, C.A.
Babalola, P.O.
Bolujo, E.O.
Adeyemi, G.A.
Babalola, R.
Olafadehan, O.A.
description The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.
doi_str_mv 10.1016/j.dib.2020.105726
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S235234092030620X</els_id><doaj_id>oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f</doaj_id><sourcerecordid>2408535585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpScImPyA3HXvZrb5tUSiU9CsQ6CU9C3k03mjrtbaSnbL_vto4lObSi0YzmnnEOy8h15xtOOPm3W4TYrcRTJxy3QjzilwIqcVaKmZf_3M_J1el7BhjXKta1GfkXArVtFy3FwQ--cnTNFKfp9hHiH6gI875KUy_U_5J_RhoxnJIY0Fa5tx7QLrH6SGFNKTtsTb44VhioamnXUwhYsGBHnIKM0wxjZfkTe-HglfPcUV-fPl8f_Ntfff96-3Nx7s1KKumtQ_CQsct9CAEAINgsArj1njetipwZXttW9MqrnXbGeyElIYZ73ng2gS5IrcLNyS_c4cc9z4fXfLRPRVS3rqTShjQAQZlQTWsU1pJ7jvrVceaBoSRyuq-sj4srMPc7TEAjlPdyQvoy5cxPrhtenSN0FyapgLePgNy-jVjmdw-FsBh8COmuTihWKurG_VYEb60Qk6lZOz_fsOZO3ntdq567U5eu8XrOvN-mcG60MeI2RWIOFZdMSNMVXH8z_QfrGWxNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408535585</pqid></control><display><type>article</type><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</creator><creatorcontrib>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</creatorcontrib><description>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2020.105726</identifier><identifier>PMID: 32478158</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ANN ; Biodiesel ; Energy ; KOH ; NaOH ; RSM ; Waste soybean oil</subject><ispartof>Data in brief, 2020-08, Vol.31, p.105726-105726, Article 105726</ispartof><rights>2020 The Authors</rights><rights>2020 The Authors. Published by Elsevier Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</citedby><cites>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</cites><orcidid>0000-0003-1653-2872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S235234092030620X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Ayoola, A.A.</creatorcontrib><creatorcontrib>Hymore, F.K.</creatorcontrib><creatorcontrib>Omonhinmin, C.A.</creatorcontrib><creatorcontrib>Babalola, P.O.</creatorcontrib><creatorcontrib>Bolujo, E.O.</creatorcontrib><creatorcontrib>Adeyemi, G.A.</creatorcontrib><creatorcontrib>Babalola, R.</creatorcontrib><creatorcontrib>Olafadehan, O.A.</creatorcontrib><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><title>Data in brief</title><description>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</description><subject>ANN</subject><subject>Biodiesel</subject><subject>Energy</subject><subject>KOH</subject><subject>NaOH</subject><subject>RSM</subject><subject>Waste soybean oil</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpScImPyA3HXvZrb5tUSiU9CsQ6CU9C3k03mjrtbaSnbL_vto4lObSi0YzmnnEOy8h15xtOOPm3W4TYrcRTJxy3QjzilwIqcVaKmZf_3M_J1el7BhjXKta1GfkXArVtFy3FwQ--cnTNFKfp9hHiH6gI875KUy_U_5J_RhoxnJIY0Fa5tx7QLrH6SGFNKTtsTb44VhioamnXUwhYsGBHnIKM0wxjZfkTe-HglfPcUV-fPl8f_Ntfff96-3Nx7s1KKumtQ_CQsct9CAEAINgsArj1njetipwZXttW9MqrnXbGeyElIYZ73ng2gS5IrcLNyS_c4cc9z4fXfLRPRVS3rqTShjQAQZlQTWsU1pJ7jvrVceaBoSRyuq-sj4srMPc7TEAjlPdyQvoy5cxPrhtenSN0FyapgLePgNy-jVjmdw-FsBh8COmuTihWKurG_VYEb60Qk6lZOz_fsOZO3ntdq567U5eu8XrOvN-mcG60MeI2RWIOFZdMSNMVXH8z_QfrGWxNg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ayoola, A.A.</creator><creator>Hymore, F.K.</creator><creator>Omonhinmin, C.A.</creator><creator>Babalola, P.O.</creator><creator>Bolujo, E.O.</creator><creator>Adeyemi, G.A.</creator><creator>Babalola, R.</creator><creator>Olafadehan, O.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1653-2872</orcidid></search><sort><creationdate>20200801</creationdate><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><author>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ANN</topic><topic>Biodiesel</topic><topic>Energy</topic><topic>KOH</topic><topic>NaOH</topic><topic>RSM</topic><topic>Waste soybean oil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayoola, A.A.</creatorcontrib><creatorcontrib>Hymore, F.K.</creatorcontrib><creatorcontrib>Omonhinmin, C.A.</creatorcontrib><creatorcontrib>Babalola, P.O.</creatorcontrib><creatorcontrib>Bolujo, E.O.</creatorcontrib><creatorcontrib>Adeyemi, G.A.</creatorcontrib><creatorcontrib>Babalola, R.</creatorcontrib><creatorcontrib>Olafadehan, O.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayoola, A.A.</au><au>Hymore, F.K.</au><au>Omonhinmin, C.A.</au><au>Babalola, P.O.</au><au>Bolujo, E.O.</au><au>Adeyemi, G.A.</au><au>Babalola, R.</au><au>Olafadehan, O.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data on artificial neural network and response surface methodology analysis of biodiesel production</atitle><jtitle>Data in brief</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>31</volume><spage>105726</spage><epage>105726</epage><pages>105726-105726</pages><artnum>105726</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</abstract><pub>Elsevier Inc</pub><pmid>32478158</pmid><doi>10.1016/j.dib.2020.105726</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1653-2872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3409
ispartof Data in brief, 2020-08, Vol.31, p.105726-105726, Article 105726
issn 2352-3409
2352-3409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f
source ScienceDirect Journals; PubMed Central
subjects ANN
Biodiesel
Energy
KOH
NaOH
RSM
Waste soybean oil
title Data on artificial neural network and response surface methodology analysis of biodiesel production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20on%20artificial%20neural%20network%20and%20response%20surface%20methodology%20analysis%20of%20biodiesel%20production&rft.jtitle=Data%20in%20brief&rft.au=Ayoola,%20A.A.&rft.date=2020-08-01&rft.volume=31&rft.spage=105726&rft.epage=105726&rft.pages=105726-105726&rft.artnum=105726&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2020.105726&rft_dat=%3Cproquest_doaj_%3E2408535585%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408535585&rft_id=info:pmid/32478158&rfr_iscdi=true