Loading…
Data on artificial neural network and response surface methodology analysis of biodiesel production
The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process...
Saved in:
Published in: | Data in brief 2020-08, Vol.31, p.105726-105726, Article 105726 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3 |
container_end_page | 105726 |
container_issue | |
container_start_page | 105726 |
container_title | Data in brief |
container_volume | 31 |
creator | Ayoola, A.A. Hymore, F.K. Omonhinmin, C.A. Babalola, P.O. Bolujo, E.O. Adeyemi, G.A. Babalola, R. Olafadehan, O.A. |
description | The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively. |
doi_str_mv | 10.1016/j.dib.2020.105726 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S235234092030620X</els_id><doaj_id>oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f</doaj_id><sourcerecordid>2408535585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpScImPyA3HXvZrb5tUSiU9CsQ6CU9C3k03mjrtbaSnbL_vto4lObSi0YzmnnEOy8h15xtOOPm3W4TYrcRTJxy3QjzilwIqcVaKmZf_3M_J1el7BhjXKta1GfkXArVtFy3FwQ--cnTNFKfp9hHiH6gI875KUy_U_5J_RhoxnJIY0Fa5tx7QLrH6SGFNKTtsTb44VhioamnXUwhYsGBHnIKM0wxjZfkTe-HglfPcUV-fPl8f_Ntfff96-3Nx7s1KKumtQ_CQsct9CAEAINgsArj1njetipwZXttW9MqrnXbGeyElIYZ73ng2gS5IrcLNyS_c4cc9z4fXfLRPRVS3rqTShjQAQZlQTWsU1pJ7jvrVceaBoSRyuq-sj4srMPc7TEAjlPdyQvoy5cxPrhtenSN0FyapgLePgNy-jVjmdw-FsBh8COmuTihWKurG_VYEb60Qk6lZOz_fsOZO3ntdq567U5eu8XrOvN-mcG60MeI2RWIOFZdMSNMVXH8z_QfrGWxNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408535585</pqid></control><display><type>article</type><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</creator><creatorcontrib>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</creatorcontrib><description>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2020.105726</identifier><identifier>PMID: 32478158</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ANN ; Biodiesel ; Energy ; KOH ; NaOH ; RSM ; Waste soybean oil</subject><ispartof>Data in brief, 2020-08, Vol.31, p.105726-105726, Article 105726</ispartof><rights>2020 The Authors</rights><rights>2020 The Authors. Published by Elsevier Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</citedby><cites>FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</cites><orcidid>0000-0003-1653-2872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S235234092030620X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Ayoola, A.A.</creatorcontrib><creatorcontrib>Hymore, F.K.</creatorcontrib><creatorcontrib>Omonhinmin, C.A.</creatorcontrib><creatorcontrib>Babalola, P.O.</creatorcontrib><creatorcontrib>Bolujo, E.O.</creatorcontrib><creatorcontrib>Adeyemi, G.A.</creatorcontrib><creatorcontrib>Babalola, R.</creatorcontrib><creatorcontrib>Olafadehan, O.A.</creatorcontrib><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><title>Data in brief</title><description>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</description><subject>ANN</subject><subject>Biodiesel</subject><subject>Energy</subject><subject>KOH</subject><subject>NaOH</subject><subject>RSM</subject><subject>Waste soybean oil</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpScImPyA3HXvZrb5tUSiU9CsQ6CU9C3k03mjrtbaSnbL_vto4lObSi0YzmnnEOy8h15xtOOPm3W4TYrcRTJxy3QjzilwIqcVaKmZf_3M_J1el7BhjXKta1GfkXArVtFy3FwQ--cnTNFKfp9hHiH6gI875KUy_U_5J_RhoxnJIY0Fa5tx7QLrH6SGFNKTtsTb44VhioamnXUwhYsGBHnIKM0wxjZfkTe-HglfPcUV-fPl8f_Ntfff96-3Nx7s1KKumtQ_CQsct9CAEAINgsArj1njetipwZXttW9MqrnXbGeyElIYZ73ng2gS5IrcLNyS_c4cc9z4fXfLRPRVS3rqTShjQAQZlQTWsU1pJ7jvrVceaBoSRyuq-sj4srMPc7TEAjlPdyQvoy5cxPrhtenSN0FyapgLePgNy-jVjmdw-FsBh8COmuTihWKurG_VYEb60Qk6lZOz_fsOZO3ntdq567U5eu8XrOvN-mcG60MeI2RWIOFZdMSNMVXH8z_QfrGWxNg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ayoola, A.A.</creator><creator>Hymore, F.K.</creator><creator>Omonhinmin, C.A.</creator><creator>Babalola, P.O.</creator><creator>Bolujo, E.O.</creator><creator>Adeyemi, G.A.</creator><creator>Babalola, R.</creator><creator>Olafadehan, O.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1653-2872</orcidid></search><sort><creationdate>20200801</creationdate><title>Data on artificial neural network and response surface methodology analysis of biodiesel production</title><author>Ayoola, A.A. ; Hymore, F.K. ; Omonhinmin, C.A. ; Babalola, P.O. ; Bolujo, E.O. ; Adeyemi, G.A. ; Babalola, R. ; Olafadehan, O.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ANN</topic><topic>Biodiesel</topic><topic>Energy</topic><topic>KOH</topic><topic>NaOH</topic><topic>RSM</topic><topic>Waste soybean oil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayoola, A.A.</creatorcontrib><creatorcontrib>Hymore, F.K.</creatorcontrib><creatorcontrib>Omonhinmin, C.A.</creatorcontrib><creatorcontrib>Babalola, P.O.</creatorcontrib><creatorcontrib>Bolujo, E.O.</creatorcontrib><creatorcontrib>Adeyemi, G.A.</creatorcontrib><creatorcontrib>Babalola, R.</creatorcontrib><creatorcontrib>Olafadehan, O.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayoola, A.A.</au><au>Hymore, F.K.</au><au>Omonhinmin, C.A.</au><au>Babalola, P.O.</au><au>Bolujo, E.O.</au><au>Adeyemi, G.A.</au><au>Babalola, R.</au><au>Olafadehan, O.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data on artificial neural network and response surface methodology analysis of biodiesel production</atitle><jtitle>Data in brief</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>31</volume><spage>105726</spage><epage>105726</epage><pages>105726-105726</pages><artnum>105726</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>The biodiesel production from waste soybean oil (using NaOH and KOH catalysts independently) was investigated in this study. The use of optimization tools (artificial neural network, ANN, and response surface methodology, RSM) for the modelling of the relationship between biodiesel yield and process parameters was carried out. The variables employed in the experimental design of biodiesel yields were methanol-oil mole ratio (6 – 12), catalyst concentration (0.7 – 1.7 wt/wt%), reaction temperature (48 – 62°C) and reaction time (50 – 90 min). Also, the usefulness of both the RSM and ANN tools in the accurate prediction of the regression models were revealed, with values of R-sq being 0.93 and 0.98 for RSM and ANN respectively.</abstract><pub>Elsevier Inc</pub><pmid>32478158</pmid><doi>10.1016/j.dib.2020.105726</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1653-2872</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3409 |
ispartof | Data in brief, 2020-08, Vol.31, p.105726-105726, Article 105726 |
issn | 2352-3409 2352-3409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ced49c470b45431ab9a4b077c263495f |
source | ScienceDirect Journals; PubMed Central |
subjects | ANN Biodiesel Energy KOH NaOH RSM Waste soybean oil |
title | Data on artificial neural network and response surface methodology analysis of biodiesel production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20on%20artificial%20neural%20network%20and%20response%20surface%20methodology%20analysis%20of%20biodiesel%20production&rft.jtitle=Data%20in%20brief&rft.au=Ayoola,%20A.A.&rft.date=2020-08-01&rft.volume=31&rft.spage=105726&rft.epage=105726&rft.pages=105726-105726&rft.artnum=105726&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2020.105726&rft_dat=%3Cproquest_doaj_%3E2408535585%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-ad29cb19cfc22cc0cd6e057196a1884d149f5986841558b6eb233606aa1d156d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408535585&rft_id=info:pmid/32478158&rfr_iscdi=true |