Loading…

Development of reproducible thiourea sensor with binary SnO2/V2O5 nanomaterials by electrochemical method

In this methodology, the thiourea (TU)sensor was made-up by means of glassy carbon electrode (GCE) layered by the wet-chemically prepared binary SnO2/V2O5 nanomaterials (NMs). The existence of SnO2 and V2O5 in prepared spherical NPs were categorized by X-ray photoelectron spectroscopy (XPS), Field E...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2020-05, Vol.13 (5), p.5406-5416
Main Authors: Alam, M.M., Uddin, M.T., Asiri, Abdullah M., Rahman, Mohammed M., Islam, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this methodology, the thiourea (TU)sensor was made-up by means of glassy carbon electrode (GCE) layered by the wet-chemically prepared binary SnO2/V2O5 nanomaterials (NMs). The existence of SnO2 and V2O5 in prepared spherical NPs were categorized by X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy and X-ray Powder Diffraction (XRD). The TU sensor was displayed the linear responses in concentration range (LDR) of 0.1 nM ~ 0.01 mM. The calibration curve of TU sensor was made by plotting current verses concentration of TU, which was measured by electrochemical technique. The sensitivity and lower limit of detection (DL) for TU sensor were calculated from calibration curve, which are found as 17.0918 µAµM-1cm−2 and 95.40 ± 4.77 pM respectively. The analytical parameters of TU sensor such as reproducibility, response time and stability were measured and found efficient results. It also was validated in the detection of TU in presence of real bio-samples. Thus, this unique and prospective method is introduced to develop the selective biosensor by electrochemical approach, which might be a pioneer sensor probe for its simple and reliable approach for the safety of healthcare and biomedical fields in a large scales.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2020.03.019