Loading…
Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static struct...
Saved in:
Published in: | Nature communications 2021-02, Vol.12 (1), p.849-849, Article 849 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3 |
container_end_page | 849 |
container_issue | 1 |
container_start_page | 849 |
container_title | Nature communications |
container_volume | 12 |
creator | Mulhall, Eric M. Ward, Andrew Yang, Darren Koussa, Mounir A. Corey, David P. Wong, Wesley P. |
description | The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca
2+
alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. |
doi_str_mv | 10.1038/s41467-021-21033-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c</doaj_id><sourcerecordid>2487157709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhYvC3kwsSqvioVIkDcLYce5L1ktjBTirtv8e7KaXlgA-2NfPOY3v8VtVLgt8SzJp3mRMuFcKUIFoCDMkn1TnFnCCiKHv6YH9WXea8x2WwljScP6_OGBOiEYyeV-6bD8MIaIoj2HWEuo_JQp1nsEuK2cb5UCe4BTPmetlB7Q7BTN7WeUkQhmVXx_4U3xmfkIVxrBc_o9GHn7WNIRSKj-FF9awvALi8Wy-qH58-fr_6gm6-fr6--nCDrMRyQbazAlrrWiMMdZJ1ZcNE25teCdG1xDHWGWASWmH642QNlX1vHecdMaJjF9X1xnXR7PWc_GTSQUfj9SkQ06BNWrwdQVtwtimTAmV5p9qGKyYdodQ2DnNpC-v9xprXbipiCEsy4yPo40zwOz3EW60ahaWgBfDmDpDirxXyoiefjx0yAeKaNeWNUrwVihXp63-k-7imUFp1UhGhFG6Lim4qWz4mJ-jvL0OwPnpCb57QxRP65AktS9Grh8-4L_njgCJgmyCXVBgg_T37P9jfHYDE-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487157709</pqid></control><display><type>article</type><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</creator><creatorcontrib>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</creatorcontrib><description>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca
2+
alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-21033-6</identifier><identifier>PMID: 33558532</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2619/1533 ; 631/57/2265 ; 631/57/2272/2273 ; 82/80 ; 96/10 ; 96/63 ; Adhesive bonding ; Animals ; Biomechanical Phenomena ; Calcium ; Calcium - metabolism ; Calcium ions ; Conversion ; Deafness ; Deafness - genetics ; Dimerization ; Domains ; Elasticity ; Extracellular Space - metabolism ; Hair ; Hair Cells, Auditory - physiology ; Humanities and Social Sciences ; Mechanical properties ; Mechanical stimuli ; Mechanotransduction ; Mice ; multidisciplinary ; Mutation ; Mutation - genetics ; Neurosciences ; Phenotype ; Phenotypes ; Proteins ; Proteins - metabolism ; Science ; Science (multidisciplinary) ; Single Molecule Imaging ; Spectroscopy ; Stimuli ; Vestibular stimuli ; Vestibular system</subject><ispartof>Nature communications, 2021-02, Vol.12 (1), p.849-849, Article 849</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</citedby><cites>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</cites><orcidid>0000-0003-4497-6016 ; 0000-0001-7398-546X ; 0000-0001-5147-4140 ; 0000-0002-2271-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2487157709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2487157709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulhall, Eric M.</creatorcontrib><creatorcontrib>Ward, Andrew</creatorcontrib><creatorcontrib>Yang, Darren</creatorcontrib><creatorcontrib>Koussa, Mounir A.</creatorcontrib><creatorcontrib>Corey, David P.</creatorcontrib><creatorcontrib>Wong, Wesley P.</creatorcontrib><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca
2+
alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</description><subject>631/378/2619/1533</subject><subject>631/57/2265</subject><subject>631/57/2272/2273</subject><subject>82/80</subject><subject>96/10</subject><subject>96/63</subject><subject>Adhesive bonding</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Conversion</subject><subject>Deafness</subject><subject>Deafness - genetics</subject><subject>Dimerization</subject><subject>Domains</subject><subject>Elasticity</subject><subject>Extracellular Space - metabolism</subject><subject>Hair</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single Molecule Imaging</subject><subject>Spectroscopy</subject><subject>Stimuli</subject><subject>Vestibular stimuli</subject><subject>Vestibular system</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhYvC3kwsSqvioVIkDcLYce5L1ktjBTirtv8e7KaXlgA-2NfPOY3v8VtVLgt8SzJp3mRMuFcKUIFoCDMkn1TnFnCCiKHv6YH9WXea8x2WwljScP6_OGBOiEYyeV-6bD8MIaIoj2HWEuo_JQp1nsEuK2cb5UCe4BTPmetlB7Q7BTN7WeUkQhmVXx_4U3xmfkIVxrBc_o9GHn7WNIRSKj-FF9awvALi8Wy-qH58-fr_6gm6-fr6--nCDrMRyQbazAlrrWiMMdZJ1ZcNE25teCdG1xDHWGWASWmH642QNlX1vHecdMaJjF9X1xnXR7PWc_GTSQUfj9SkQ06BNWrwdQVtwtimTAmV5p9qGKyYdodQ2DnNpC-v9xprXbipiCEsy4yPo40zwOz3EW60ahaWgBfDmDpDirxXyoiefjx0yAeKaNeWNUrwVihXp63-k-7imUFp1UhGhFG6Lim4qWz4mJ-jvL0OwPnpCb57QxRP65AktS9Grh8-4L_njgCJgmyCXVBgg_T37P9jfHYDE-A</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Mulhall, Eric M.</creator><creator>Ward, Andrew</creator><creator>Yang, Darren</creator><creator>Koussa, Mounir A.</creator><creator>Corey, David P.</creator><creator>Wong, Wesley P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4497-6016</orcidid><orcidid>https://orcid.org/0000-0001-7398-546X</orcidid><orcidid>https://orcid.org/0000-0001-5147-4140</orcidid><orcidid>https://orcid.org/0000-0002-2271-6910</orcidid></search><sort><creationdate>20210208</creationdate><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><author>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/2619/1533</topic><topic>631/57/2265</topic><topic>631/57/2272/2273</topic><topic>82/80</topic><topic>96/10</topic><topic>96/63</topic><topic>Adhesive bonding</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Conversion</topic><topic>Deafness</topic><topic>Deafness - genetics</topic><topic>Dimerization</topic><topic>Domains</topic><topic>Elasticity</topic><topic>Extracellular Space - metabolism</topic><topic>Hair</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single Molecule Imaging</topic><topic>Spectroscopy</topic><topic>Stimuli</topic><topic>Vestibular stimuli</topic><topic>Vestibular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulhall, Eric M.</creatorcontrib><creatorcontrib>Ward, Andrew</creatorcontrib><creatorcontrib>Yang, Darren</creatorcontrib><creatorcontrib>Koussa, Mounir A.</creatorcontrib><creatorcontrib>Corey, David P.</creatorcontrib><creatorcontrib>Wong, Wesley P.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulhall, Eric M.</au><au>Ward, Andrew</au><au>Yang, Darren</au><au>Koussa, Mounir A.</au><au>Corey, David P.</au><au>Wong, Wesley P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>849</spage><epage>849</epage><pages>849-849</pages><artnum>849</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca
2+
alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33558532</pmid><doi>10.1038/s41467-021-21033-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4497-6016</orcidid><orcidid>https://orcid.org/0000-0001-7398-546X</orcidid><orcidid>https://orcid.org/0000-0001-5147-4140</orcidid><orcidid>https://orcid.org/0000-0002-2271-6910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-02, Vol.12 (1), p.849-849, Article 849 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/2619/1533 631/57/2265 631/57/2272/2273 82/80 96/10 96/63 Adhesive bonding Animals Biomechanical Phenomena Calcium Calcium - metabolism Calcium ions Conversion Deafness Deafness - genetics Dimerization Domains Elasticity Extracellular Space - metabolism Hair Hair Cells, Auditory - physiology Humanities and Social Sciences Mechanical properties Mechanical stimuli Mechanotransduction Mice multidisciplinary Mutation Mutation - genetics Neurosciences Phenotype Phenotypes Proteins Proteins - metabolism Science Science (multidisciplinary) Single Molecule Imaging Spectroscopy Stimuli Vestibular stimuli Vestibular system |
title | Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20force%20spectroscopy%20reveals%20the%20dynamic%20strength%20of%20the%20hair-cell%20tip-link%20connection&rft.jtitle=Nature%20communications&rft.au=Mulhall,%20Eric%20M.&rft.date=2021-02-08&rft.volume=12&rft.issue=1&rft.spage=849&rft.epage=849&rft.pages=849-849&rft.artnum=849&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-21033-6&rft_dat=%3Cproquest_doaj_%3E2487157709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487157709&rft_id=info:pmid/33558532&rfr_iscdi=true |