Loading…

Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection

The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static struct...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-02, Vol.12 (1), p.849-849, Article 849
Main Authors: Mulhall, Eric M., Ward, Andrew, Yang, Darren, Koussa, Mounir A., Corey, David P., Wong, Wesley P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3
cites cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3
container_end_page 849
container_issue 1
container_start_page 849
container_title Nature communications
container_volume 12
creator Mulhall, Eric M.
Ward, Andrew
Yang, Darren
Koussa, Mounir A.
Corey, David P.
Wong, Wesley P.
description The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca 2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli. The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.
doi_str_mv 10.1038/s41467-021-21033-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c</doaj_id><sourcerecordid>2487157709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhYvC3kwsSqvioVIkDcLYce5L1ktjBTirtv8e7KaXlgA-2NfPOY3v8VtVLgt8SzJp3mRMuFcKUIFoCDMkn1TnFnCCiKHv6YH9WXea8x2WwljScP6_OGBOiEYyeV-6bD8MIaIoj2HWEuo_JQp1nsEuK2cb5UCe4BTPmetlB7Q7BTN7WeUkQhmVXx_4U3xmfkIVxrBc_o9GHn7WNIRSKj-FF9awvALi8Wy-qH58-fr_6gm6-fr6--nCDrMRyQbazAlrrWiMMdZJ1ZcNE25teCdG1xDHWGWASWmH642QNlX1vHecdMaJjF9X1xnXR7PWc_GTSQUfj9SkQ06BNWrwdQVtwtimTAmV5p9qGKyYdodQ2DnNpC-v9xprXbipiCEsy4yPo40zwOz3EW60ahaWgBfDmDpDirxXyoiefjx0yAeKaNeWNUrwVihXp63-k-7imUFp1UhGhFG6Lim4qWz4mJ-jvL0OwPnpCb57QxRP65AktS9Grh8-4L_njgCJgmyCXVBgg_T37P9jfHYDE-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487157709</pqid></control><display><type>article</type><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</creator><creatorcontrib>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</creatorcontrib><description>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca 2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli. The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-21033-6</identifier><identifier>PMID: 33558532</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2619/1533 ; 631/57/2265 ; 631/57/2272/2273 ; 82/80 ; 96/10 ; 96/63 ; Adhesive bonding ; Animals ; Biomechanical Phenomena ; Calcium ; Calcium - metabolism ; Calcium ions ; Conversion ; Deafness ; Deafness - genetics ; Dimerization ; Domains ; Elasticity ; Extracellular Space - metabolism ; Hair ; Hair Cells, Auditory - physiology ; Humanities and Social Sciences ; Mechanical properties ; Mechanical stimuli ; Mechanotransduction ; Mice ; multidisciplinary ; Mutation ; Mutation - genetics ; Neurosciences ; Phenotype ; Phenotypes ; Proteins ; Proteins - metabolism ; Science ; Science (multidisciplinary) ; Single Molecule Imaging ; Spectroscopy ; Stimuli ; Vestibular stimuli ; Vestibular system</subject><ispartof>Nature communications, 2021-02, Vol.12 (1), p.849-849, Article 849</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</citedby><cites>FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</cites><orcidid>0000-0003-4497-6016 ; 0000-0001-7398-546X ; 0000-0001-5147-4140 ; 0000-0002-2271-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2487157709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2487157709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulhall, Eric M.</creatorcontrib><creatorcontrib>Ward, Andrew</creatorcontrib><creatorcontrib>Yang, Darren</creatorcontrib><creatorcontrib>Koussa, Mounir A.</creatorcontrib><creatorcontrib>Corey, David P.</creatorcontrib><creatorcontrib>Wong, Wesley P.</creatorcontrib><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca 2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli. The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</description><subject>631/378/2619/1533</subject><subject>631/57/2265</subject><subject>631/57/2272/2273</subject><subject>82/80</subject><subject>96/10</subject><subject>96/63</subject><subject>Adhesive bonding</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Conversion</subject><subject>Deafness</subject><subject>Deafness - genetics</subject><subject>Dimerization</subject><subject>Domains</subject><subject>Elasticity</subject><subject>Extracellular Space - metabolism</subject><subject>Hair</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single Molecule Imaging</subject><subject>Spectroscopy</subject><subject>Stimuli</subject><subject>Vestibular stimuli</subject><subject>Vestibular system</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhYvC3kwsSqvioVIkDcLYce5L1ktjBTirtv8e7KaXlgA-2NfPOY3v8VtVLgt8SzJp3mRMuFcKUIFoCDMkn1TnFnCCiKHv6YH9WXea8x2WwljScP6_OGBOiEYyeV-6bD8MIaIoj2HWEuo_JQp1nsEuK2cb5UCe4BTPmetlB7Q7BTN7WeUkQhmVXx_4U3xmfkIVxrBc_o9GHn7WNIRSKj-FF9awvALi8Wy-qH58-fr_6gm6-fr6--nCDrMRyQbazAlrrWiMMdZJ1ZcNE25teCdG1xDHWGWASWmH642QNlX1vHecdMaJjF9X1xnXR7PWc_GTSQUfj9SkQ06BNWrwdQVtwtimTAmV5p9qGKyYdodQ2DnNpC-v9xprXbipiCEsy4yPo40zwOz3EW60ahaWgBfDmDpDirxXyoiefjx0yAeKaNeWNUrwVihXp63-k-7imUFp1UhGhFG6Lim4qWz4mJ-jvL0OwPnpCb57QxRP65AktS9Grh8-4L_njgCJgmyCXVBgg_T37P9jfHYDE-A</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Mulhall, Eric M.</creator><creator>Ward, Andrew</creator><creator>Yang, Darren</creator><creator>Koussa, Mounir A.</creator><creator>Corey, David P.</creator><creator>Wong, Wesley P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4497-6016</orcidid><orcidid>https://orcid.org/0000-0001-7398-546X</orcidid><orcidid>https://orcid.org/0000-0001-5147-4140</orcidid><orcidid>https://orcid.org/0000-0002-2271-6910</orcidid></search><sort><creationdate>20210208</creationdate><title>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</title><author>Mulhall, Eric M. ; Ward, Andrew ; Yang, Darren ; Koussa, Mounir A. ; Corey, David P. ; Wong, Wesley P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/2619/1533</topic><topic>631/57/2265</topic><topic>631/57/2272/2273</topic><topic>82/80</topic><topic>96/10</topic><topic>96/63</topic><topic>Adhesive bonding</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Conversion</topic><topic>Deafness</topic><topic>Deafness - genetics</topic><topic>Dimerization</topic><topic>Domains</topic><topic>Elasticity</topic><topic>Extracellular Space - metabolism</topic><topic>Hair</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single Molecule Imaging</topic><topic>Spectroscopy</topic><topic>Stimuli</topic><topic>Vestibular stimuli</topic><topic>Vestibular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulhall, Eric M.</creatorcontrib><creatorcontrib>Ward, Andrew</creatorcontrib><creatorcontrib>Yang, Darren</creatorcontrib><creatorcontrib>Koussa, Mounir A.</creatorcontrib><creatorcontrib>Corey, David P.</creatorcontrib><creatorcontrib>Wong, Wesley P.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulhall, Eric M.</au><au>Ward, Andrew</au><au>Yang, Darren</au><au>Koussa, Mounir A.</au><au>Corey, David P.</au><au>Wong, Wesley P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>849</spage><epage>849</epage><pages>849-849</pages><artnum>849</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca 2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli. The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link. Here authors show that a single tip-link bond is more mechanically stable relative to classic cadherins, and that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33558532</pmid><doi>10.1038/s41467-021-21033-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4497-6016</orcidid><orcidid>https://orcid.org/0000-0001-7398-546X</orcidid><orcidid>https://orcid.org/0000-0001-5147-4140</orcidid><orcidid>https://orcid.org/0000-0002-2271-6910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-02, Vol.12 (1), p.849-849, Article 849
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cedc8ced7e7c4b7984736d122c8d046c
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/2619/1533
631/57/2265
631/57/2272/2273
82/80
96/10
96/63
Adhesive bonding
Animals
Biomechanical Phenomena
Calcium
Calcium - metabolism
Calcium ions
Conversion
Deafness
Deafness - genetics
Dimerization
Domains
Elasticity
Extracellular Space - metabolism
Hair
Hair Cells, Auditory - physiology
Humanities and Social Sciences
Mechanical properties
Mechanical stimuli
Mechanotransduction
Mice
multidisciplinary
Mutation
Mutation - genetics
Neurosciences
Phenotype
Phenotypes
Proteins
Proteins - metabolism
Science
Science (multidisciplinary)
Single Molecule Imaging
Spectroscopy
Stimuli
Vestibular stimuli
Vestibular system
title Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20force%20spectroscopy%20reveals%20the%20dynamic%20strength%20of%20the%20hair-cell%20tip-link%20connection&rft.jtitle=Nature%20communications&rft.au=Mulhall,%20Eric%20M.&rft.date=2021-02-08&rft.volume=12&rft.issue=1&rft.spage=849&rft.epage=849&rft.pages=849-849&rft.artnum=849&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-21033-6&rft_dat=%3Cproquest_doaj_%3E2487157709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-cbc5e9cd9a5a2d63b9a5359faf755b91d33bae36e95afe95aca26ffcd44b1a5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487157709&rft_id=info:pmid/33558532&rfr_iscdi=true