Loading…

Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping

While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We a...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-07, Vol.15 (1), p.6060-10, Article 6060
Main Authors: Jiang, Yida, Zhang, Xinghe, Nie, Honggang, Fan, Jianxiong, Di, Shuangshuang, Fu, Hui, Zhang, Xiu, Wang, Lijuan, Tang, Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c366t-8fe344909ab242ad6ec0145bd23a0b7326176e92e0f3cecc84085fb1809cb74b3
container_end_page 10
container_issue 1
container_start_page 6060
container_title Nature communications
container_volume 15
creator Jiang, Yida
Zhang, Xinghe
Nie, Honggang
Fan, Jianxiong
Di, Shuangshuang
Fu, Hui
Zhang, Xiu
Wang, Lijuan
Tang, Chun
description While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors. Photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, but unambiguous identification of cross-linked residues hinders data interpretation. Here, the authors report a quantitative analysis of alkyl diazirine photo-cross-linking reactions and reveal a two-step mechanism, enabling selective targeting of buried polar residues.
doi_str_mv 10.1038/s41467-024-50315-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf088e26e48a4202afa5720cbbf10b82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf088e26e48a4202afa5720cbbf10b82</doaj_id><sourcerecordid>3082432004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8fe344909ab242ad6ec0145bd23a0b7326176e92e0f3cecc84085fb1809cb74b3</originalsourceid><addsrcrecordid>eNp9kT1v3SAUhq2oVRKl-QMdKktdutAePmzjsUq_IkXKks4I8OGGWxtcsIebX19ynaZVh7KA4DkPHN6qek3hPQUuP2RBRdsRYII0wGlDDifVOQNBCe0Yf_HX-qy6zHkPZfCeSiFOqzPeA2tkC-fV9MnnjHbxYVcPXj_45APW831cIkmoy0EM9YT2Xgefp9rFVM8pLuhDnTD7YUWSZ7TeeVvbFHMmow8_Hm06DMWYFx0s1pOe57L5qnrp9Jjx8mm-qL5_-Xx39Y3c3H69vvp4Qyxv24VIh1yIHnptmGB6aNECFY0ZGNdgOs5a2rXYMwTHLVorBcjGGSqht6YThl9U15t3iHqv5uQnnQ4qaq-OGzHtlE6LtyMq60BKZC0KqQUDpp1uOgbWGEfBSFZc7zZX6fvninlRk88Wx1EHjGtWHCRrWdfTpqBv_0H3cU2hdHqkBGcAolBso47_ldA9P5CCesxWbdmqkq06ZqsOpejNk3o1Ew7PJb-TLADfgFyOwg7Tn7v_o_0FAImwNw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082432004</pqid></control><display><type>article</type><title>Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jiang, Yida ; Zhang, Xinghe ; Nie, Honggang ; Fan, Jianxiong ; Di, Shuangshuang ; Fu, Hui ; Zhang, Xiu ; Wang, Lijuan ; Tang, Chun</creator><creatorcontrib>Jiang, Yida ; Zhang, Xinghe ; Nie, Honggang ; Fan, Jianxiong ; Di, Shuangshuang ; Fu, Hui ; Zhang, Xiu ; Wang, Lijuan ; Tang, Chun</creatorcontrib><description>While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors. Photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, but unambiguous identification of cross-linked residues hinders data interpretation. Here, the authors report a quantitative analysis of alkyl diazirine photo-cross-linking reactions and reveal a two-step mechanism, enabling selective targeting of buried polar residues.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-50315-y</identifier><identifier>PMID: 39025860</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 631/1647/296 ; 631/92/96 ; 639/638/439 ; 639/638/440/56 ; Buried structures ; Carbenes ; Constraints ; Cross-Linking Reagents - chemistry ; Crosslinking ; Data interpretation ; Diazomethane - chemistry ; Humanities and Social Sciences ; Intermediates ; Irradiation ; Light ; Light intensity ; Luminous intensity ; Mapping ; Methane - analogs &amp; derivatives ; Methane - chemistry ; multidisciplinary ; Peptide mapping ; Photolysis ; Protein Conformation ; Proteins ; Proteins - chemistry ; Quantitative analysis ; Reaction mechanisms ; Residues ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-07, Vol.15 (1), p.6060-10, Article 6060</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-8fe344909ab242ad6ec0145bd23a0b7326176e92e0f3cecc84085fb1809cb74b3</cites><orcidid>0009-0000-0873-6272 ; 0000-0001-6477-6500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3082432004/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082432004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39025860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yida</creatorcontrib><creatorcontrib>Zhang, Xinghe</creatorcontrib><creatorcontrib>Nie, Honggang</creatorcontrib><creatorcontrib>Fan, Jianxiong</creatorcontrib><creatorcontrib>Di, Shuangshuang</creatorcontrib><creatorcontrib>Fu, Hui</creatorcontrib><creatorcontrib>Zhang, Xiu</creatorcontrib><creatorcontrib>Wang, Lijuan</creatorcontrib><creatorcontrib>Tang, Chun</creatorcontrib><title>Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors. Photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, but unambiguous identification of cross-linked residues hinders data interpretation. Here, the authors report a quantitative analysis of alkyl diazirine photo-cross-linking reactions and reveal a two-step mechanism, enabling selective targeting of buried polar residues.</description><subject>101/58</subject><subject>631/1647/296</subject><subject>631/92/96</subject><subject>639/638/439</subject><subject>639/638/440/56</subject><subject>Buried structures</subject><subject>Carbenes</subject><subject>Constraints</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Data interpretation</subject><subject>Diazomethane - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Intermediates</subject><subject>Irradiation</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Mapping</subject><subject>Methane - analogs &amp; derivatives</subject><subject>Methane - chemistry</subject><subject>multidisciplinary</subject><subject>Peptide mapping</subject><subject>Photolysis</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Quantitative analysis</subject><subject>Reaction mechanisms</subject><subject>Residues</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kT1v3SAUhq2oVRKl-QMdKktdutAePmzjsUq_IkXKks4I8OGGWxtcsIebX19ynaZVh7KA4DkPHN6qek3hPQUuP2RBRdsRYII0wGlDDifVOQNBCe0Yf_HX-qy6zHkPZfCeSiFOqzPeA2tkC-fV9MnnjHbxYVcPXj_45APW831cIkmoy0EM9YT2Xgefp9rFVM8pLuhDnTD7YUWSZ7TeeVvbFHMmow8_Hm06DMWYFx0s1pOe57L5qnrp9Jjx8mm-qL5_-Xx39Y3c3H69vvp4Qyxv24VIh1yIHnptmGB6aNECFY0ZGNdgOs5a2rXYMwTHLVorBcjGGSqht6YThl9U15t3iHqv5uQnnQ4qaq-OGzHtlE6LtyMq60BKZC0KqQUDpp1uOgbWGEfBSFZc7zZX6fvninlRk88Wx1EHjGtWHCRrWdfTpqBv_0H3cU2hdHqkBGcAolBso47_ldA9P5CCesxWbdmqkq06ZqsOpejNk3o1Ew7PJb-TLADfgFyOwg7Tn7v_o_0FAImwNw</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Jiang, Yida</creator><creator>Zhang, Xinghe</creator><creator>Nie, Honggang</creator><creator>Fan, Jianxiong</creator><creator>Di, Shuangshuang</creator><creator>Fu, Hui</creator><creator>Zhang, Xiu</creator><creator>Wang, Lijuan</creator><creator>Tang, Chun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-0873-6272</orcidid><orcidid>https://orcid.org/0000-0001-6477-6500</orcidid></search><sort><creationdate>20240718</creationdate><title>Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping</title><author>Jiang, Yida ; Zhang, Xinghe ; Nie, Honggang ; Fan, Jianxiong ; Di, Shuangshuang ; Fu, Hui ; Zhang, Xiu ; Wang, Lijuan ; Tang, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8fe344909ab242ad6ec0145bd23a0b7326176e92e0f3cecc84085fb1809cb74b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/58</topic><topic>631/1647/296</topic><topic>631/92/96</topic><topic>639/638/439</topic><topic>639/638/440/56</topic><topic>Buried structures</topic><topic>Carbenes</topic><topic>Constraints</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Data interpretation</topic><topic>Diazomethane - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Intermediates</topic><topic>Irradiation</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Mapping</topic><topic>Methane - analogs &amp; derivatives</topic><topic>Methane - chemistry</topic><topic>multidisciplinary</topic><topic>Peptide mapping</topic><topic>Photolysis</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Quantitative analysis</topic><topic>Reaction mechanisms</topic><topic>Residues</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yida</creatorcontrib><creatorcontrib>Zhang, Xinghe</creatorcontrib><creatorcontrib>Nie, Honggang</creatorcontrib><creatorcontrib>Fan, Jianxiong</creatorcontrib><creatorcontrib>Di, Shuangshuang</creatorcontrib><creatorcontrib>Fu, Hui</creatorcontrib><creatorcontrib>Zhang, Xiu</creatorcontrib><creatorcontrib>Wang, Lijuan</creatorcontrib><creatorcontrib>Tang, Chun</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yida</au><au>Zhang, Xinghe</au><au>Nie, Honggang</au><au>Fan, Jianxiong</au><au>Di, Shuangshuang</au><au>Fu, Hui</au><au>Zhang, Xiu</au><au>Wang, Lijuan</au><au>Tang, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6060</spage><epage>10</epage><pages>6060-10</pages><artnum>6060</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors. Photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, but unambiguous identification of cross-linked residues hinders data interpretation. Here, the authors report a quantitative analysis of alkyl diazirine photo-cross-linking reactions and reveal a two-step mechanism, enabling selective targeting of buried polar residues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39025860</pmid><doi>10.1038/s41467-024-50315-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0000-0873-6272</orcidid><orcidid>https://orcid.org/0000-0001-6477-6500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-07, Vol.15 (1), p.6060-10, Article 6060
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cf088e26e48a4202afa5720cbbf10b82
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/58
631/1647/296
631/92/96
639/638/439
639/638/440/56
Buried structures
Carbenes
Constraints
Cross-Linking Reagents - chemistry
Crosslinking
Data interpretation
Diazomethane - chemistry
Humanities and Social Sciences
Intermediates
Irradiation
Light
Light intensity
Luminous intensity
Mapping
Methane - analogs & derivatives
Methane - chemistry
multidisciplinary
Peptide mapping
Photolysis
Protein Conformation
Proteins
Proteins - chemistry
Quantitative analysis
Reaction mechanisms
Residues
Science
Science (multidisciplinary)
title Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20diazirine%20photo-reaction%20mechanism%20for%20protein%20residue-specific%20cross-linking%20and%20distance%20mapping&rft.jtitle=Nature%20communications&rft.au=Jiang,%20Yida&rft.date=2024-07-18&rft.volume=15&rft.issue=1&rft.spage=6060&rft.epage=10&rft.pages=6060-10&rft.artnum=6060&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-50315-y&rft_dat=%3Cproquest_doaj_%3E3082432004%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-8fe344909ab242ad6ec0145bd23a0b7326176e92e0f3cecc84085fb1809cb74b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082432004&rft_id=info:pmid/39025860&rfr_iscdi=true