Loading…

Conformal group theory of tensor structures

A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation fun...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2020-10, Vol.2020 (10), p.1-39, Article 4
Main Authors: Burić, Ilija, Schomerus, Volker, Isachenkov, Mikhail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3
cites cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3
container_end_page 39
container_issue 10
container_start_page 1
container_title The journal of high energy physics
container_volume 2020
creator Burić, Ilija
Schomerus, Volker
Isachenkov, Mikhail
description A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the d -dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.
doi_str_mv 10.1007/JHEP10(2020)004
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05</doaj_id><sourcerecordid>2473427269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</originalsourceid><addsrcrecordid>eNp1kUtLAzEURoMoWKtrtwNuFBl7k0maybKUaisFXeg6ZPLog2lTkxmh_97UER8LV_dyOd-By4fQJYY7DMAHj9PJM4ZrAgRuAOgR6mEgIi8pF8e_9lN0FuMaADMsoIdux37rfNioOlsE3-6yZml92GfeZY3dRh-y2IRWN22w8RydOFVHe_E1--j1fvIynubzp4fZeDTPNWW4ySmuSuMcsaVgvGQGG8tVpUFgx9iQsqLSFmvLK1eCgqFhVFRECc2J0ppaU_TRrPMar9ZyF1YbFfbSq5X8PPiwkCo0K11bqR1URjnuHCYUK6WAJldBDAiX5Cy5bjrXUtV_VNPRXB5uQAoGGMQ7TuxVx-6Cf2ttbOTat2GbXpWE8oISToYiUYOO0sHHGKz71mKQhyZk14Q8NCFTEykBXSImcruw4cf7X-QD-0iJeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473427269</pqid></control><display><type>article</type><title>Conformal group theory of tensor structures</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</creator><creatorcontrib>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</creatorcontrib><description>A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the d -dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2020)004</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Conformal Field Theory ; Correlation ; Correlators ; Decomposition ; Elementary Particles ; Euclidean geometry ; Euclidean space ; Field theory ; Global Symmetries ; Group theory ; High energy physics ; High Energy Physics - Theory ; Mathematical models ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Space-Time Symmetries ; String Theory ; Tensors ; Wave functions</subject><ispartof>The journal of high energy physics, 2020-10, Vol.2020 (10), p.1-39, Article 4</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</citedby><cites>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473427269/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473427269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02350109$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Burić, Ilija</creatorcontrib><creatorcontrib>Schomerus, Volker</creatorcontrib><creatorcontrib>Isachenkov, Mikhail</creatorcontrib><title>Conformal group theory of tensor structures</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the d -dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</description><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Correlation</subject><subject>Correlators</subject><subject>Decomposition</subject><subject>Elementary Particles</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Field theory</subject><subject>Global Symmetries</subject><subject>Group theory</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Space-Time Symmetries</subject><subject>String Theory</subject><subject>Tensors</subject><subject>Wave functions</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtLAzEURoMoWKtrtwNuFBl7k0maybKUaisFXeg6ZPLog2lTkxmh_97UER8LV_dyOd-By4fQJYY7DMAHj9PJM4ZrAgRuAOgR6mEgIi8pF8e_9lN0FuMaADMsoIdux37rfNioOlsE3-6yZml92GfeZY3dRh-y2IRWN22w8RydOFVHe_E1--j1fvIynubzp4fZeDTPNWW4ySmuSuMcsaVgvGQGG8tVpUFgx9iQsqLSFmvLK1eCgqFhVFRECc2J0ppaU_TRrPMar9ZyF1YbFfbSq5X8PPiwkCo0K11bqR1URjnuHCYUK6WAJldBDAiX5Cy5bjrXUtV_VNPRXB5uQAoGGMQ7TuxVx-6Cf2ttbOTat2GbXpWE8oISToYiUYOO0sHHGKz71mKQhyZk14Q8NCFTEykBXSImcruw4cf7X-QD-0iJeA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Burić, Ilija</creator><creator>Schomerus, Volker</creator><creator>Isachenkov, Mikhail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope></search><sort><creationdate>20201001</creationdate><title>Conformal group theory of tensor structures</title><author>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Correlation</topic><topic>Correlators</topic><topic>Decomposition</topic><topic>Elementary Particles</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Field theory</topic><topic>Global Symmetries</topic><topic>Group theory</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Space-Time Symmetries</topic><topic>String Theory</topic><topic>Tensors</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burić, Ilija</creatorcontrib><creatorcontrib>Schomerus, Volker</creatorcontrib><creatorcontrib>Isachenkov, Mikhail</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burić, Ilija</au><au>Schomerus, Volker</au><au>Isachenkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal group theory of tensor structures</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>2020</volume><issue>10</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>4</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the d -dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2020)004</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2020-10, Vol.2020 (10), p.1-39, Article 4
issn 1029-8479
1126-6708
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classical and Quantum Gravitation
Conformal Field Theory
Correlation
Correlators
Decomposition
Elementary Particles
Euclidean geometry
Euclidean space
Field theory
Global Symmetries
Group theory
High energy physics
High Energy Physics - Theory
Mathematical models
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Space-Time Symmetries
String Theory
Tensors
Wave functions
title Conformal group theory of tensor structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20group%20theory%20of%20tensor%20structures&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Buri%C4%87,%20Ilija&rft.date=2020-10-01&rft.volume=2020&rft.issue=10&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=4&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2020)004&rft_dat=%3Cproquest_doaj_%3E2473427269%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473427269&rft_id=info:pmid/&rfr_iscdi=true