Loading…
Conformal group theory of tensor structures
A bstract The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation fun...
Saved in:
Published in: | The journal of high energy physics 2020-10, Vol.2020 (10), p.1-39, Article 4 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3 |
container_end_page | 39 |
container_issue | 10 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2020 |
creator | Burić, Ilija Schomerus, Volker Isachenkov, Mikhail |
description | A
bstract
The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the
d
-dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible. |
doi_str_mv | 10.1007/JHEP10(2020)004 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05</doaj_id><sourcerecordid>2473427269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</originalsourceid><addsrcrecordid>eNp1kUtLAzEURoMoWKtrtwNuFBl7k0maybKUaisFXeg6ZPLog2lTkxmh_97UER8LV_dyOd-By4fQJYY7DMAHj9PJM4ZrAgRuAOgR6mEgIi8pF8e_9lN0FuMaADMsoIdux37rfNioOlsE3-6yZml92GfeZY3dRh-y2IRWN22w8RydOFVHe_E1--j1fvIynubzp4fZeDTPNWW4ySmuSuMcsaVgvGQGG8tVpUFgx9iQsqLSFmvLK1eCgqFhVFRECc2J0ppaU_TRrPMar9ZyF1YbFfbSq5X8PPiwkCo0K11bqR1URjnuHCYUK6WAJldBDAiX5Cy5bjrXUtV_VNPRXB5uQAoGGMQ7TuxVx-6Cf2ttbOTat2GbXpWE8oISToYiUYOO0sHHGKz71mKQhyZk14Q8NCFTEykBXSImcruw4cf7X-QD-0iJeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473427269</pqid></control><display><type>article</type><title>Conformal group theory of tensor structures</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</creator><creatorcontrib>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</creatorcontrib><description>A
bstract
The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the
d
-dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2020)004</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Conformal Field Theory ; Correlation ; Correlators ; Decomposition ; Elementary Particles ; Euclidean geometry ; Euclidean space ; Field theory ; Global Symmetries ; Group theory ; High energy physics ; High Energy Physics - Theory ; Mathematical models ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Space-Time Symmetries ; String Theory ; Tensors ; Wave functions</subject><ispartof>The journal of high energy physics, 2020-10, Vol.2020 (10), p.1-39, Article 4</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</citedby><cites>FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473427269/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473427269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02350109$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Burić, Ilija</creatorcontrib><creatorcontrib>Schomerus, Volker</creatorcontrib><creatorcontrib>Isachenkov, Mikhail</creatorcontrib><title>Conformal group theory of tensor structures</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the
d
-dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</description><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Correlation</subject><subject>Correlators</subject><subject>Decomposition</subject><subject>Elementary Particles</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Field theory</subject><subject>Global Symmetries</subject><subject>Group theory</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Space-Time Symmetries</subject><subject>String Theory</subject><subject>Tensors</subject><subject>Wave functions</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtLAzEURoMoWKtrtwNuFBl7k0maybKUaisFXeg6ZPLog2lTkxmh_97UER8LV_dyOd-By4fQJYY7DMAHj9PJM4ZrAgRuAOgR6mEgIi8pF8e_9lN0FuMaADMsoIdux37rfNioOlsE3-6yZml92GfeZY3dRh-y2IRWN22w8RydOFVHe_E1--j1fvIynubzp4fZeDTPNWW4ySmuSuMcsaVgvGQGG8tVpUFgx9iQsqLSFmvLK1eCgqFhVFRECc2J0ppaU_TRrPMar9ZyF1YbFfbSq5X8PPiwkCo0K11bqR1URjnuHCYUK6WAJldBDAiX5Cy5bjrXUtV_VNPRXB5uQAoGGMQ7TuxVx-6Cf2ttbOTat2GbXpWE8oISToYiUYOO0sHHGKz71mKQhyZk14Q8NCFTEykBXSImcruw4cf7X-QD-0iJeA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Burić, Ilija</creator><creator>Schomerus, Volker</creator><creator>Isachenkov, Mikhail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope></search><sort><creationdate>20201001</creationdate><title>Conformal group theory of tensor structures</title><author>Burić, Ilija ; Schomerus, Volker ; Isachenkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Correlation</topic><topic>Correlators</topic><topic>Decomposition</topic><topic>Elementary Particles</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Field theory</topic><topic>Global Symmetries</topic><topic>Group theory</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Space-Time Symmetries</topic><topic>String Theory</topic><topic>Tensors</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burić, Ilija</creatorcontrib><creatorcontrib>Schomerus, Volker</creatorcontrib><creatorcontrib>Isachenkov, Mikhail</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burić, Ilija</au><au>Schomerus, Volker</au><au>Isachenkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal group theory of tensor structures</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>2020</volume><issue>10</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>4</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A
bstract
The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the
d
-dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a ‘gauge’ in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2020)004</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2020-10, Vol.2020 (10), p.1-39, Article 4 |
issn | 1029-8479 1126-6708 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf0bdaf7ff1241aaa04b2a32d09f0a05 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Classical and Quantum Gravitation Conformal Field Theory Correlation Correlators Decomposition Elementary Particles Euclidean geometry Euclidean space Field theory Global Symmetries Group theory High energy physics High Energy Physics - Theory Mathematical models Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Space-Time Symmetries String Theory Tensors Wave functions |
title | Conformal group theory of tensor structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20group%20theory%20of%20tensor%20structures&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Buri%C4%87,%20Ilija&rft.date=2020-10-01&rft.volume=2020&rft.issue=10&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=4&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2020)004&rft_dat=%3Cproquest_doaj_%3E2473427269%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-41b8dff2e895785d1de7abc091f556453bce1ce7bf80a06d549b2a9c72acc4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473427269&rft_id=info:pmid/&rfr_iscdi=true |